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Variability of radiation of space objects

 The nighttime sky seems immutable to the human eye, but
this is not true.

* From ancient Egyptian, Greek, and Australian Aboriginal
cultures it was known that a few stars (such as Algol, Mira,
and Aldeberan) were recognized as variables.

* After starting telescopic studies from the seventeenth through
twenty first centuries, more variable stars were found with a
wide range of characteristics.

 NASA's Kepler mission has recently shown that most ordinary
stars are variable when observed with ~0.001% accuracy.



Causes of variability

* Due to pulsations, rotationally-modulated
movements or eclipses of binary companions.

 Magnetic flares, eruptions, pulsations, gas accretion
from companions and, most surprisingly, new and
supernova explosions.

* The brightest sources in the X-ray and gamma-ray sky
are highly variable, typically from accretion of gas
onto neutron stars and black holes.



Astronomy in the time domain

Timescales range from milliseconds to decades with a
bewildering range of periodic, quasi-periodic, stochastic and
bursting characteristics.

The Galactic black hole binary GRS 1915+105 alone has a
dozen modes of variability.

The radio sky has extragalactic quasars and blazars as well as
Galactic pulsars and several varieties of fast radio bursts and
transients.

The non-photon gravitational wave observatories have
recently emerged with rapid “chirps” from merging black hole
and neutron star binaries.

A huge industry searching for distant supernova explosions is
propelled by their utility in tracing the accelerated expansion
of the Universe.



Methods of analysis

Accounting for this tremendous growth in the amount
and complexity of astronomical time series data, we
can ask what methods are common for their
characterization and analysis.

* Time series texts oriented toward engineers and
meteorologists generally use spectral and wavelet
analysis rather autoregressive modeling.

e Surprisingly, the most common methods for
characterizing time series in statistics — parametric
autoregressive time domain models — are seldom
used to interpret astronomical brightness variations
of stars.
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Celestial objects exhibit a wide range of wvarability in brightness at different
wavabands. Surprizingly, the most common methods for characterizing time =saries
in statistics—parametric auloegressive modeling—are rarely used to  interpret
astronomical light curves. We rmeview standard ARMA, ARIMA, and ARFIMA
(autoregressive moving average fractionally integrated) models that treat short-memany
autocorrelation, long-memory 1,/ “red noiza,” and nonstationary trends. Though
dasigned for evenly spacad time sefes, moderately imegular cadences can be treatad
az svonly-spaced fime sanes with missing data. Fitting algorthms are efficient and
software implementations are widely available. We apply ARIMA medels to ight curves
of four variable stars, discussing their effectivenass for different tamporal characteristics.
A variety of extensions to ARIMA are outlined, with emphasis on recently developed
continuous-time modeals like CARMA and CARFIMA, dasigned for irmegularly spacad time
saries. Strengths and weakness of ARIMA-type modeling for astronomical data analysis
and astrophysical insights ara reviewed.

Keywords: time domain astronomy, imegulary sampled time seriss, variable stars, quosars, statistical methods,
time series analysis, autorsgressive modeling, ARIMA

THE VARIABILITY OF COSMIC POPULATIONS

Except for five roving planets and an occasional comet or nova, the nighttime sky seems immutable
to the human eye. The pattern and brightness of stars appears unchanging as from our childhood
to old age. Myths from ancient Egyptian, Greek, and Australian Aboriginal cultures suggest that
a few stars (such as Algol, Mira, and Aldeberan) were recognized as variables [1, 2]. As telescopic
studies proliferated from the seventeenth through twenty first centuries, more variable stars were
found with a wide range of characteristics. Some are periodic due to pulsations, rotationally
modulated spots, or eclipses of binary companions. Others vary in irregular ways from magnetic
flares, eruptions, pulsations, accretion of gas from companions, and most spectacularly, nova and
supernova explosions. Ten thousand stars in two dozen categories were cataloged by Kukarkin and
Parenago [3]; this catalog now has over 50,000 stars with =100 classes [4]. NASAs Kepler mission
has recently shown that most ordinary stars are variable when observed with ~0.001% accuracy
and dense cadences |5].

The study of celestial objects with variable brightness has broadened hugely in recent decades,
emerging as a recognized discipline called "time domain astronomy” [&6]. The brightest sources
in the X-ray and gamma-ray sky are highly variable, typically from accretion of gas onto neatron
stars and black holes. Timescales range from milliseconds to decades with a bewildering range of
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Autoregressive model AR(p)

An autoregressive (AR) process has coefficients that

guantify the dependence of current values on recent
past values:

where a..a, are the corresponding coefficients for each lag
up to order p, @, is constant (often for simplicity it is assumed to

be zero), and &, isanormally (Gaussian) distributed random
error with zero mean and constant variance.



Moving average model MA(q)

A moving average (MA) process has coefficients that quantify
the dependence of current values on recent past random shocks
to the system:

where &, is the error term for the t-th time point, b1’ s bq
are the coefficients for each lagged error term up to order g.



ARMA(p, q)

Adding these two equations together gives a
combined ARMA(p,q) process. Coefficients are

estimated by standard regression procedures such
as maximum likelihood estimation.




Difference procedure

Nonstationarity and variable mean values can sometimes be
removed by fitting a global regression model such as a
polynomial, but often an adequate detrending regression model
cannot be found. A flexible nonparametric procedure called
differencing can remove nonstationarity in many such cases. Here
one applies the backshift operator B that replaces the time series
y, by another y,” consisting of the point-to-point difference in
values:

ytI: yt o Byt — yt o yt_l



ARIMA(p,d,q) and ARFIMA(p,d,q)

This combination of nonparametric differencing and integration
with a parametric ARMA process is called the ARIMA(p,d,q)
model where d represents the number of differencing
operations applied and typically equals one.

A fractional integrated procedure can be described by

o0

@-By =, @-Bf =3, |-B)

k:

where d can be a real (non-integer) order of differencing and B
is the backshift operator defined above.



Attractive models for astronomical

time series analysis

ARMA, ARIMA, and ARFIMA models can be very useful for
astronomical time series analysis for various reasons:

* they are very flexible, successfully modeling an astonishing
variety of irregular or quasi-periodic, smooth or choppy,
constant or variable mean light curves.

* the dimensionality of the models is relatively low with a
moderate computational burden of the numerical
optimization.

e error analysis on the parameters naturally emerges through
the likelihood regression analysis.

* they are extensible to situations involving multivariate time
series, combinations of stochastic and deterministic
behaviors, change points, and (moderately) irregular
observation spacing.



Disadvantages of autoregressive
modeling

* Autoregressive modeling is not well-adapted
to situations with strictly periodic variations

(where the signal is compactly concentrated in
Fourier power coefficients)

 or with sudden eruptive events (where the
nonstationary amplitude is not greatly
reduced by differencing).

Despite their advantages, non-trivial ARIMA models
have been used very rarely in time domain astronomy!!!




Testing the Model

The first action that every analyst should take after

ARIMA-type modeling is model validation based, in

part, on residual analysis. There are two reasons

why:

e even though the “best fit” has been obtained in a
maximum likelihood sense, the entire model
family may not apply to the dataset under study;

* the model may be correctly specified but its
underlying mathematical assumptions may be
violated.
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ABSTRACT

The Sun is variable in activity with changes on time-scales as short as minutes to as long as a
solar cycle. Although the most accurate measurements are limited to the satellite era, the past
four decades, looking at the solar variability over this pericd provides a possible link berween
complex dynamics of the Sun and the accompanying radiation. Measurements of the latter and
their analysis by sophisticated time series methods encourage forecasting future values of the
time series. Our data analysiz work focuses on the soft X-ray emission observed at the cumrent
solar minimum, in 2017 September July. We have found two different (active and inactive)
states of the solar activity using a Hidden Markov Model, and we show that in the periods
of high-zolar activity the energy distribution of soft X-rav solar flares is well described by an
ARFIMA-GARCH model, whereas in the case of low-solar activity an ARFIMA model is best
fitted. Switching from the inactive state to the active one is caused by explosive phenomena in
the Sun. The model describes three effects detected in our empirical studies. One of them is a
long-term dependence, the second is variance changing in time, and the third corresponds to
heavy-tailed distributions of the X-rav data. Moreover, the model takes into account memory
effects in soft X-ray emission due to the Sun’s magnetic field evolution. All this together
allows us to suggest a statistically justified model for explaining the solar activity variability
at the current solar minimum.

Key words: methods: statistical —space vehicles: instraments — Sun: activity.
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Solar imaginary of Active Region
AR12665, provided by the space
observatory SDO (Solar Dynamics
Observatory):

a) HMI Intensitygram, b) HMI
Magnetogram. These images come
from the Helioseismic and Magnetic
Imager (HMI), an instrument on SDO.
The image b) shows the magnetic field
directions near the surface of the Sun.

Red and blue areas indicate opposite
magnetic polarities, with red showing

outward polarity and blue showing
inward polarity.



Fqu,W’!m2

Fqu,me2

Major X-class solar flare X9.3

1072

| ——GOES150.1-0.8 nm |

Time, UT

w04

GOES13 0.1-0.8 nm

Sep 4

Sep5

Sep 6
Time, UT

Sep7

An interesting X-class X9.3 solar flare
was at 12:02 UTC on September 6,
2017. The event began at 11:53, peak
at 12:02 and ended at 12:10 UTC. It
was the second X-class solar flare that
day. It happened a few hours after the
X2.2 flash at 09:33 UTC. The previous
record for the strongest cycle flare was
X6.9 on August 9, 2011. The hatching
in the figure indicates a lack of data.




ARFIMA for solar X-ray time series

* Using an ARFIMA model estimation directly to the entire time
series is problematic, as the parameters d, p, and g are
changing.

e Butif we take a rolling window of 512 data points and scan the
entire segment from beginning to the end, observing how the
parameters change, then the parameter estimate becomes a
successful procedure.

* From this point of view the best model is (2,d,0).

* The third parameter d characterizes memory effects caused by
the Sun’s magnetic field. The memory of the solar cycle plays
an important role in predictions because it determines how
much of the past history of solar activity determines its future
output.



Hidden Markov Model

Hidden Markov Model (HMM) is a statistical Markov model in which the system being
modeled is assumed to be a Markov process with unobserved (i.e. hidden) states. In the
hidden Markov model, the state is not directly visible, but the output (in the form of data),

dependent on the state, is visible.
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Imagine two friends talking on the phone every
night, what they did today during the day. One
of them can do only three things: walk in the
park, go shopping or clean the room. His choice
is based only on the weather, which was at the
time of the decision. Another friend know
nothing about the weather in the region, where
his friend lives, but he can, based on decisions
of his friend, try to guess what the weather was.
The weather behavior can be represented as a
Markov chain, it has two states: sunny or rainy,
but the second friend cannot see it himself,
therefore, it is hidden from him.

Every day, the first friend makes one of three possible decisions: a walk, shopping or
cleaning. The second can know about his decision, so this is an observable value. In general,

we get HMM.
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A FORMAL METHOD FOR IDENTIFYING DISTINCT STATES OF VARIABILITY
IN TIME-VARYING SOURCES: SGR A* AS AN EXAMPLE
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ABSTRACT

Continuously time variable sources are often characterized by their power spectral density and flux distribution.
These quantities can undergo dramatic changes over time if the underlying physical processes change. However,
some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a
methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic
supermassive black hole, where 2.2 pum flux is observed from a source associated with Sgr A* and where two
distinct states have recently been suggested. Our approach is taken from mathematical finance and works with
conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden)
state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density
time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly
available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single
intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our
methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on
its way toward the black hole and might create a new state of variability.

Key words: accretion, accretion disks — black hole physics — Galaxy: center — methods: statistical

Online-only material: color figure

Sagittarius A* is a bright and very compact astronomical radio source at the center of the
Milky Way, near the border of the constellations Sagittarius and Scorpius.




lllustration of a two-state hidden
Markov model
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The observed value is presented as the total dotted distribution. It can be decomposed
into the ground state (GS) and the excited state (ES), which are not directly observable.




Two regimes in switching of solar
activity in September 2017
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Conclusions

Soft X-ray emission demonstrates a long-term dependence,
variance changing in time, and heavy-tailed distributions.

Evidence for the existence of regime (state) switching behaviour
was found.

The observed flux densities exhibit two states: background
dominated and flares dominated.

The piecewise ARFIMA and ARFIMA—-GARCH models were built
separately for both states. In the models the solar X-ray data are
considered as a non-stationary time series, whereas the short
intervals may be stationary, but their duration is random.

Our findings were confirmed by rigorous ARFIMA and ARFIMA-
GARCH residual diagnostics which shown that for most of the case a
plain ARFIMA model is not enough.

In the framework of ARFIMA and ARFIMA-GARCH models the
evolution of their parameters is connected with changes of solar
activity (in X-ray emission). The correlations are very noticeable.



