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taken from SOHO/LASCO CME catalog and the maximum CME
lated as daily values. Then the monthly values were produced.

the WDC-SILSO, Royal Observatory of Belgium, Brussels,
e used the second version ISSN data.

| (FI) data are taken from Bogazici University Kandilli Observatory as daily
onthly average values were calculated.

. ownloaded from NASA OMNIWeb system as a daily values and the
monthly va vere calculated.

SSA data are taken from Debrecen Photoheliographic Data (DPD) sunspot catalogue as
a daily data, then the monthly values were calculated.

The TSI data are taken from as
a daily values and the monthly values were calculated.


ftp://ftp.pmodwrc.ch/pub/data/irradiance/composite
ftp://ftp.pmodwrc.ch/pub/data/irradiance/composite

ear relationship between the MCMESI and

indicators (ISSN, SSA, FI, F10.7 and TSI) cross-
od was used.

| 5 the orrelation between two data sets by
ount time delay.
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ossible non-linear interaction between the MCMESI and
icators Convergent Cross Mapping (CCM) analysis
d. This method can distinguish causality from
usality, correlation is not necessary nor

0 apply CCM method we should first determine the
ing dimension of each variable. The embedding

can be determined by using the prediction

nce of the simplex projection. Then, by using this

embe dimensions, two data sets can be used for CCM
analysis and possible causalities can be obtained by determining
how well local neighborhoods on two studied variables’
reconstructions will correspond to each other.
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Monthly SSA Monthly SSA
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Monthly SSN Monthly SSN
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Monthly TSI Monthly TSI
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Cross Map Skill
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 MCMESI variations could

cause Fl variations

* Asymetrical unidirectional
coupling

* FI have nearly no effect on
MCMESI in the long term




Cross Map Skill
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* MCMESI Dynamics are
more sensitive to the states
of SSA than vice versa

* There is a synchonized
variation




Cross Map Skill
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* MCMESI Dynamics are
more sensitive to the states
of SSN than vice versa.

* Variations in SSN, cause
MCMESI to change




Cross Map Skill
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* MCMESI Dynamics are
more sensitive to the states
of F10.7 than vice versa.

e Variations in F10.7, cause

MCMESI to change
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TSI Dynamics are insensitive
to the states of MCMESI but
the reverse is not true

* So TSI corresponds to
external forcing or there is an

incomplete information flow
from MCMESI to TSI




ata sets used in this study can be
imated by deterministic chaos rather than stochastic

esults indicate that there are no bidirectional coupling in
the term (more than one cycle). Because one of the CCM
curve always under the level of correlation coefficient.

v" In contrast, for the short term there are synchronized relation
between two variable.

v TSI behave differently than other data sets used; it has the
weakest coupling with the MCMESI
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