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Motivation 

Application of the Principle Component Analysis in processing 

spectroscopic observations 

Classic Cloud Model as a training data basis 

Develop a data-pipeline which incorporates various functions and 

procedures:  

make use of iterative PCA   

minimize human interaction 

 create a unified protocol for bulk processing of high-resolution echelle 

spectra  

Analysizing high-resolution observations of strong chromospheric 

absorption lines  

 Physical maps 

 Cloud Model inversions 
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Observations 

 70-cm Vacuum Tower Telescope, at the 

Observatorio del Teide, Tenerife, Spain 

 Echelle spectrograph 

 Wavelenght range: 655.9 nm – 657.1 nm 

 Dispersion: 0.6 pm pixel-1 

 Lline of interest: Hα λ 656.28 nm 

 Active region: NOAA 11126 

 Coordinates: S32.6° and E5.5° 

 FOV: 78.0″ x 186.9″ 

 Date and time: 18 November 2010, 

10:22 UT 

 Observed features: two small decaying 

sunspots and a filament  
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Preparing Observed Spectra 
 Continuum intensity correction 

 Compute quiet-Sun profile from 

observations: 

 Hα CLV data as a template  

 Identifying quiet-Sun profile from 

observations    

 Extract ± 3Å around the line-core  

 Adjust the observed profiles to fit 

quiet-Sun profiles 

 Basic line properties properties: 

 continuum intensity 

 line-core intensity and position 

 absolute contrast 

 Compute contrast profiles using 

corrected spectra and quiet-Sun 

profiles from each data set 
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The original Hα absorption profiles observed and 

described in David (1961). Colors correspond to the 

six μ values: 1.0 (red), 0.8 (magenta), 0.6 (purple), 

0,436 (indigo), 0.312 (blue), 0.28 (teal), and 0.141 

(black) 



Cloud Model Training Data Basis 
 The Classic Cloude model (Beckers, 1964) 

 Use Hα center-to-limb observations (David, 1961) as a starting point for creating a 

training model data set  
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The initial Hα spectra density distribution of the CM training data base. The next step involves 

applying PCA and refinement procedure to reduce number of profiles which will be used in 

inverting the observed Hα profiles .  



Cloud Model Training Data Basis 
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 The classic CM has four adjustable parameters: 

 optical thickness, Doppler velocity, Doppler width, and source function 

 

2D histograms displaying the six possible projections of the four-dimensional parameter space 

of the CM basis allow to evaluate the relation between the basic physical parameters and to 

trace the reasonable model thresholds. 



Principle Component Analysis 

 Applying pattern recognition technique 

in spectral analysis 

 Importance of choosing the matrix 

mode 

 What is the power of the Principle 

Component Analysis? 

 Describe data variability  

 Dimensionality reduction 

 Highlight the elements with most 

relevant information in a given data set 

  PCA and Singular Value 

Decomposition 

 reducing noise in spectral observations 

often contaminated with telluric lines 
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PCA and CM basis  

Text box 1 
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 Text Box 2 

 

The first six eigenprofiles derived by applying PCA to the original Hα CLV observations. The first 

one presents the most prominent features in the data, the rest are arranged with respect to the 

number of minima and maxima. 



PCA denoising of  the real contrast profiles 

Text box 1 
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 Text Box 2 

 

The first six eigenprofiles obtained by applying PCA to the observed high-resolution echelle 

spectra. These are used to recreate most of the observed features. The red smooth profiles are 

obtained after PC decomposition and using the result for profile reconstruction. 



PCA decomposition and data denosing 

Text box 1 
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 Text Box 2 

 

Using the first 10 eigenprofiles, we are able to reconstruct the various features found in the 

observed spectra, e.g., blue and red shifted profiles, as well as, narrow and broad profiles and 

their corresponding contrast profiles. 



Physical Maps 

 Three different sets of  profiles 

are used as an input for 

computing physical maps from 

various parameters of the 

observed spectra: 

 original spectra 

 data denoised using PCA from 

observed spectra 

 data denoised using PCA from 

CM basis 
 

 Physical maps: 

 absolute contrast 

 equivalent width 

 various methods for computing 

LOS velocities 

 bisectors 

 FWHM  
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Line-of-sight velocity maps computed from parabola fit of 

the line-core (bottom) and by using the FWHM (top). This 

allows us to trace the motion in the vicinity of the sunspots 

and the filament.  



Cloud Model Inversion Maps 

Text box 1 
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Maps of the four CM parameters inferred from the inversion of Hα profiles.  In principle these 

four parameters can be computed either from  from PCA  decomposed contrast profiles 

using the cloud model database or using the original data. 



Conclusion: 

Uniform procedure for  bulk processing of high-resolution echelle 

spectral data 

Exploiting iterative PCA  approach 

 refining training Cloud Model data base 

 refining CM inversion  

 denoising observed spectra 

 Facilitates the investigation of complex and dynamic fine 

structures in the solar chromosphere 

Results: 

 Three input options for accurate physical maps 

 CM inversions 
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Thank you for your attention! 
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