## Recalibration of the sunspot indices: causes and consequences

Katya Georgieva VarSITI co-chair The sunspots are the most visible manifestation of solar activity



and with the longest record

The original "relative sunspot number", known also as "Wolf number" or "Zurich international sunspot number", was defined by Wolf as  $R_7 = k (10G + N)$ 



## More reliable to count the number of sunspot groups





Linear relationship between the number of sunspot groups and the number of sunspots



#### However, $R_Z$ and $R_G$ are not identical the main difference – the long-term trends





Sunspot Number Workshop at Sunspot





Why the Sunspot Number Needs Re-examination

E.W. Cliver Space Vehicles Directorate Sacramento Peak Observatory Sunspot, NM 88349

AFRE

Integrity **\*** Service **\*** Excellence

#### We have two sunspot numbers



Hoyt & Schatten, GRL 21, 1994

#### With no consensus on which is more accurate

- -Vieira et al. (2011) **G** (1610-1700); (1700-present)
- Dikpati et al. (2006) (1750-1880)
- Solanki et al. (2004) G (1610-present)

#### RECALIBRATING THE SUNSPOT NUMBER (SSN): THE SSN WORKSHOPS

E. W. CLIVER<sup>1</sup>, F. CLETTE<sup>2</sup> and L. SVALGAARD<sup>3</sup>

 <sup>1</sup>Space Vehicles Directorate, Air Force Research Laboratory, Sunspot, NM, 88349 USA
 <sup>2</sup>Solar Influences Data Center, Royal Observatory of Belgium, 3 Rue Circulaire, 1180 Brussels, Belgium
 <sup>3</sup>W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 USA

Cent. Eur. Astrophys. Bull. 37 (2013) 2, 401–416

The use of two SSNs might be acceptable if the differences between the two time series were insignificant. Figure 1 shows that that is not the case. The choice of which sunspot time series to use can have a substantial difference on the conclusions drawn. For example, the report that we have just experienced the most active period of solar activity in the last  $\sim 8,000$ years (Solanki *et al.*, 2004; cf., Usoskin *et al.*, 2006) is based on the use of the Group SSN.

To address the problem of the two discordant sunspot numbers, we have, with the sponsorship of the US National Solar Observatory (NSO), the Royal Observatory of Belgium (ROB), and the US Air Force, initiated a series of SSN Workshops.

401

Given the importance of the reconstructed time series, the coexistence of two conflicting series is a highly unsatisfactory situation that should now be actively addressed. Clette et al. (2015)

Goals of this workshop

Rectify discrepancy between G & I SSN series during 19th century

Publish a vetted and agreed upon single SSN time series

#### Sunspot number workshop 19-22 September 2011

Sunspot (National Solar Observatory, Sacramento Peak, New Mexico)



**Ed Cliver** 

National Solar Observatory US Air Force Research Lab



#### Leif Svalgaard

Stanford University





#### **Frederic Clette**

Royal Observatory of Belgium

#### Sunspot number workshops



SSN1 – September 2011







Mini SSN Workshop September 2012



SSN4 – January 2014



SSN3 – January 2013

### SIDC (Solar Influences Data analysis Center)

created in 1980 in the Royal Observatory of Belgium as a World Data Center with the task to continue the International relative sunspot number record after the decision of the new director of the Swiss Federal Institute of Technology J.O. Stenflo to terminate the 130-year-long Zürich sunspot number observational program initiated by R. Wolf

"Since July 1st 2015, the original Sunspot number data are replaced by a new entirely revised data series."



Sunspot Index and Longterm Solar Observations



#### SUNSPOT NUMBER CORRECTIONS



#### The difference is mainly before 1885



Kopp et al. (2016)



#### GROUP NUMBER CORRECTIONS





• Long term trends ... gone Difference between the two series ... gone



### Consequences of the recalibrations

| A recent wave of new results: SN                                                      |                                                          |                                                                                                                                 |                                                                                                                                                                              |  |  |
|---------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Reference                                                                             | Торіс                                                    | Pros                                                                                                                            | Cons                                                                                                                                                                         |  |  |
| Leussu et al. 2013                                                                    | 1849 Schwabe Wolf transition                             | <ul> <li>Use of original Schwabe<br/>documents</li> <li>True 20% jump in 1849</li> </ul>                                        | <ul> <li>Conclusions extrapolated<br/>outside the limited 1826-1868<br/>data interval</li> <li>Early Schwabe drift not taken<br/>into account</li> </ul>                     |  |  |
| Lockwood et al.<br>2014                                                               | 1947 Waldemeier<br>jump                                  | <ul> <li>Unbiased statistical<br/>estimator for jump factor</li> <li>Use of multiple indices<br/>(RGO GN, spot area)</li> </ul> | <ul> <li>Use of uncorrected original SN<br/>and GN</li> <li>Influence of time windows<br/>ignored</li> <li>Inclusion of the Leussu et al.<br/>2013 20% correction</li> </ul> |  |  |
| Lockwood et al.<br>2016                                                               | 1947 Waldmeier<br>jump                                   | Use of an external<br>comparison (FoF2<br>ionospheric index)                                                                    | <ul> <li>Only 15 years before 1947<br/>transition</li> <li>Homogeneity of early data is<br/>uncertain</li> </ul>                                                             |  |  |
| Friedli 2016                                                                          | Reconstruction of<br>the Zurich SN series<br>(1849-1981) | Direct exploitation of     original documents (Wolf)                                                                            | <ul> <li>Only single standard Zurich<br/>observer</li> <li>Assumed stability not verified</li> </ul>                                                                         |  |  |
| <ul><li>Interesting ideas but new mistakes</li><li>2 new SN series proposed</li></ul> |                                                          |                                                                                                                                 |                                                                                                                                                                              |  |  |
| 5/4/2016                                                                              |                                                          | Space Climate 6, Levi                                                                                                           | 22                                                                                                                                                                           |  |  |

#### A recent wave of new results: GN

| Reference                    | Topic                                          | Pros                                                                                                                                                      | Cons                                                                                                                                                                                               |  |  |
|------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Svalgaard & Schatten<br>2015 | GN 1610 - 2015                                 | <ul> <li>Daisy-chaining replaced by<br/>5 primary "backbone"<br/>observers</li> <li>Different group-splitting<br/>practices taken into account</li> </ul> | K factors by simple linear<br>regressions     Yearly means     Staudacher k factor applied to<br>1610-1749     7% Zurich classification effect<br>not proven                                       |  |  |
| Lockwood et al. 2016         | Biases in the<br>determination of k<br>factors | <ul> <li>Effects of non-<br/>proportionality and non-<br/>linearity on linear<br/>regression</li> </ul>                                                   | <ul> <li>Simulation based on<br/>photographic data (RGO)</li> <li>Only considers the acuity to<br/>detect small groups</li> </ul>                                                                  |  |  |
| Usoskin et al. 2016          | GN 1749 - 1899<br>New active-days<br>method    | <ul> <li>Innovative approach</li> <li>No need for k coefficients</li> <li>Can bridge data gaps</li> </ul>                                                 | <ul> <li>Calibration on simulated data<br/>(RGO catalogue)</li> <li>Only considers the acuity to<br/>detect small groups</li> <li>Wolf-Wolfer comparison:<br/>unexplained non-linearity</li> </ul> |  |  |
| Cliver & Ling 2016           | GN 1830 - 1995                                 | <ul> <li>Reconstruction of original<br/>Hoyt &amp; Schatten method</li> <li>Diagnostic of 1884-1915<br/>bias factor</li> </ul>                            | <ul> <li>Same daisy-chaining as the original GN</li> <li>K factors by linear regression</li> </ul>                                                                                                 |  |  |
| 3 new GN series proposed     |                                                |                                                                                                                                                           |                                                                                                                                                                                                    |  |  |

| 5/4/2016 | Space Climate 6, Levi | 23 |
|----------|-----------------------|----|
| -, -,    |                       |    |



# VarSITI Project "Long-term solar variability and sunspot indices"



Based on the knowledge of the mechanisms of solar activity and observations of its various solar and terrestrial manifestations, to answer two questions:

-whether there were century-to century variations of solar activity in the last 400 years

-whether the differences in the long-term variations of different sunspot indices (e.g. sunspot number and sunspot group number) are due to calculation or methodological errors and the indices need to be reconciled, or are due to physical reasons and the differences can give additional information about the way the Sun operates.

# Is it justified to aim at "rectifying" the discrepancy between the Wolf and group numbers?





 $R_{G} = 12.08 G$ 

Geomagnetism and Aeronomy, 2017, Vol. 57, No. 7, pp. 1

#### Their ratio varies in quite a systematic way

## Number of sunspots per sunspot group



The number of sunspots pe sunspot group has solar cyc and cycle-to-cycle variation

**Fig. 3.** Total number of sunspots per sunspot group sured by LEAR (black solid line), HOLL (grey solid and SVTO (black dotted line), 12-point smoothed me values, compared to the total number of sunspots ave over the three observatories (grey shading), 12-n smoothed monthly values.

#### The number of different groups varies differently



6. Variations of the fraction of sunspots contained in S ups (grey) and in L groups (black) in LEAR (thick solid ), HOLL (thick dotted line), and SVTO (thin solid ), with the total number of registered sunspots, averl over the three observatories (grey shading), 12-month othed monthly averages.



S – simple groups
(Zurich class and B)
M – medium (class C)
L – large groups
L – large groups

e complexity of a sunspot oup (and the number of nspots in it) increases with its agnetic field.

neeley, 1966)



sunspot magnetic field varies in the sunspot (Pevtsov et al., 2012)



The discrepancy between the sunspot number and the group sunspot number is a real feature reflecting variations in the operation of solar dynamo.