# Solar periodicities detected within neutral atmospheric and ionospheric parameters

#### Petra Koucká Knížová, Katya Georgieva, Zbyšek Mošna, Michal Kozubek, Daniel Kouba, Boian Kirov, Kateřina Potužníková, Josef Boška

 Institute of Atmospheric Physics, Czech Academy of Sciences, Boční II/1401, Prague 4, Czech Republic
Space Research and Technology Institute, Bulgarian Academy of Sciences, Bl. 3 Acad. G. Bonchev str.1113, Sofia, Bulgaria

## Vertical Coupling

External forcing Solar, magnetospheric and geomagnetic processes

State and evolution of the Upper Atmosphere -Ionosphere system

State and evolution of the Middle atmosphere



Internal forcing Atmospheric waves



#### Correlation coefficients of foF2 (15 European stations)



At the distance exceeding 1000 km and/or about 10 degrees of latitude, the correlation coefficient of fluctuations decrease rapidly.

Common influence on scale 1000 km/10 degree - tropospheric systems (mesoscale systems have typically up to 2000 km in diameter) and atmospheric waves with corresponding scale.

#### Deposition of solar energy in the atmosphere



Stanley C. Solomon and Living Qian, 2005

S.G. Roux et al. / Journal of Atmospheric and Solar-Terrestrial Physics 90-91 (2012) 186-197



Fig. 1. Data set: raw signals without missing data. For foF2 measurement in (a) the longest segment available is shown.





189

## Solar periodicities within solar flux 10.7 cm





## Wavelet Transform Coherence Solar Flux, Sunspot number vs. Critical frequency

Flux SSN - foF2



| Period            | Persistence<br>(cycle) | Time occurence SC                                                              | WTC         |
|-------------------|------------------------|--------------------------------------------------------------------------------|-------------|
| 3 years           | all                    | 19-23 SC                                                                       | F10.7, foF2 |
| 3 years           | 2                      | Max 21 SC                                                                      | SSN, foF2   |
| 2 years           | 6<br>6                 | 20- beginning 21 SC<br>21-22 SC                                                | F10.7, foF2 |
| 2 years           | 5<br>6                 | 20 SC<br>22 SC                                                                 | SSN, foF2   |
| 1 year            | 4<br>3<br>3            | Max 20 SC<br>Max 21 SC<br>descending phase 22                                  | F10.7, foF2 |
| 1 year            | 4<br>3<br>bursts       | Max 20 SC<br>Max 21 SC<br>ascending phase 22<br>SC – descending<br>phase 23 SC | SSN, foF2;  |
| 6 months          | Short bursts           | 19-23 SC                                                                       | F10.7, foF2 |
| 6 months          | Short bursts           | 19-23 SC                                                                       | SSN, foF2   |
| 2 months          | bursts                 | Mainly 22 SC                                                                   | F10.7, foF2 |
| 2 months          | bursts                 | Mainly 21 SC<br>almost no<br>occurrence 22-23 SC                               | SSN, foF2   |
| 30 days (27 days) | bursts                 | stronger 20 SC and<br>22-23 SC                                                 | F10.7, foF2 |
| 30 days (27 days) | bursts                 | stronger 19-20 SC,                                                             | SSN, foF2   |

## WTC Sunspot number vs Stratospheric temperature













#### WTC Solar flux vs Stratospheric temperature





Solar Flux - T30





#### WTC Solar Irradiance vs Stratospheric temperature



Irradiance - T20

Irradiance - T30





| Period  | Persistence<br>(cycle) | Time occurence SC                                         | WTC                                        |
|---------|------------------------|-----------------------------------------------------------|--------------------------------------------|
| 4 years | 7                      | 22 SC                                                     | F10.7;T10hPa                               |
| 4 years | 6                      | 22 SC                                                     | SSN;T10hPa                                 |
| 4 years | 10                     | 22 SC - 23 SC merges<br>with 2years                       | TSI;T10hPa                                 |
| 2 years | 11                     | 21 SC – 23 SC; strongest<br>22 SC                         | F10.7;T10hPa                               |
| 2 years | 4 around maxima        | 21 SC – 23 SC; strongest<br>22 SC                         | F10.7;T20hPa<br>F10.7;T30hPa               |
| 2 years | 8                      | 22 SC - 23 SC                                             | SSN;T10hPa                                 |
| 2 years | 5 around maxima        | 22 SC - 23 SC;                                            | SSN;T20hPa<br>SSN;T30hPa                   |
| 2 years | 8                      | 22 SC - 23 SC                                             | TSI;T10hPa                                 |
| 2 years | 3 around maxima        | 22 SC - 23 SC;                                            | TSI;T20hPa<br>TSI;T30hPa                   |
| 1 year  | 4                      | 22 SC - descending<br>phase                               | F10.7;T10hPa F10.7;T20hPa,<br>F10.7;T30hPa |
| 1 year  | 3; 5 (longest burst)   | 21 SC – 23 SC;<br>before and after maxima<br>of the cycle | SSN;T10hPa<br>SSN;T20hPa<br>SSN;T30hPa     |
| 1 year  | 5<br>2                 | 22 SC - after maxima<br>21 SC descending phase            | TSI;T10hPa<br>TSI;T20hPa<br>TSI;T30hPa     |

| Period            | Persistence<br>(cycle) | Time occurence SC              | WTC                                        |
|-------------------|------------------------|--------------------------------|--------------------------------------------|
| 6 months          | 4<br>bursts            | 22 SC<br>22 SC - 23 SC         | F10.7;T10hPa                               |
| 6 months          | 4                      | Before and after max of 22 SC  | F10.7;T20hPa, F10.7;T30hPa                 |
| 6 months          | bursts                 | 21 SC - 23 SC                  | SSN;T10hPa<br>SSN;T20hPa<br>SSN;T30hPa     |
| 6 months          | bursts                 | 21 SC - 23 SC                  | TSI;T10hPa<br>TSI;T20hPa<br>TSI;T30hPa     |
| 2 months          | 2<br>2                 | 21 SC – 23 SC, around<br>max   | F10.7;T10hPa<br>F10.7;T20hPa, F10.7;T30hPa |
| 2 months          | bursts                 | 23 SC                          | SSN;T10hPa                                 |
| 2 months          | bursts                 | random                         | SSN;T20hPa<br>SSN;T30hPa                   |
| 2 months          | bursts                 | minima                         | TSI;T10hPa<br>TSI;T20hPa<br>TSI;T30hPa     |
| 30 days (27 days) | bursts                 | 21 - 23 SC                     | F10.7;T10hPa                               |
| 30 days (27 days) | bursts                 | 21 – 23 SC; mainly in 22<br>SC | F10.7;T20hPa, F10.7;T30hPa                 |
| 30 days (27 days) | bursts                 | 21 - 23 SC,                    | SSN;T10hPa<br>SSN;T20hPa<br>SSN;T30hPa     |
| 30 days (27 days) | bursts                 | 21 - 23 SC,                    | TSI;T10hPa<br>TSI;T20hPa<br>TSI;T30hPa     |

## Conclusion

- Wide range of coherent structures within solar and atmospheric data series
- Periodicities 3-4 years, 2 years, 1 year

6 months, 2 months, 1 month

 Domains of coherence vary significantly during particular solar cycle (SC)

Significant difference between cycles.

- Domains of coherence depend on the selected indices
- It indicates the changing solar forcing and/or atmospheric sensitivity with time.