Solar radio bursts from proton-producing flares and CMEs

Rositsa Miteva

rmiteva@space.bas.bg

Space Research and Technology Institute, Bulgarian Academy of Sciences (SRTI-BAS), Bulgaria

Susan W. Samwel

National Research Institute of Astronomy and Geophysics (NRIAG), Egypt

Vratislav Krupar

Universities Space Research Association & NASA/GSFC, USA Institute of Atmospheric Physics (IAP-CAS), Czech Republic

> 9th Workshop "Solar Influences on the Magnetosphere, Ionosphere and Atmosphere" 30 May–03 June 2017, Sunny Beach, Bulgaria

CAS

Introduction

Aim

Comparative study on the <u>occurrence</u> of radio burst types II, III and IV in relation to the solar origin of proton events (flares/CMEs) in ongoing SC24 (2009–2016)

Previous work on SC23: *Miteva et al. (2013), CEAB*

<u>SEPs</u> → (flares/CMEs) → Radio bursts

Cane et al. (2002); Gopalswamy (2003); Cliver et al. (2004); Cliver & Ling (2007, 2009), Miteva et al. (2013)...

Radio bursts → (flares/CMEs) → SEPs

Kahler (1982); Cliver et al. (2004); Goplaswamy et al. (2008); Winter & Ledbetter (2015); Prakash et al. (2017)...

SEPs – radio bursts

Event selection:

Composing 'generalized' proton catalog

bias-free from satellite/instrument/energy, etc.: cross-correlation (onset time, peak intensity, solar origin) of 5 proton catalogs/3 instruments/7 energy ranges

GOES (2): NOAA list; Papaioanou et al. (2016)

Wind/EPACT (2): list (Miteva et al. 2016)

SOHO/ERNE: SEPServer list (Vainio et al. 2013)

- Solar origin identification of protons: flares & CMEs
 criteria: time; helio-location; proton profile; IP-type III bursts
- Searching radio bursts in the time period: flare onset CME first appearance

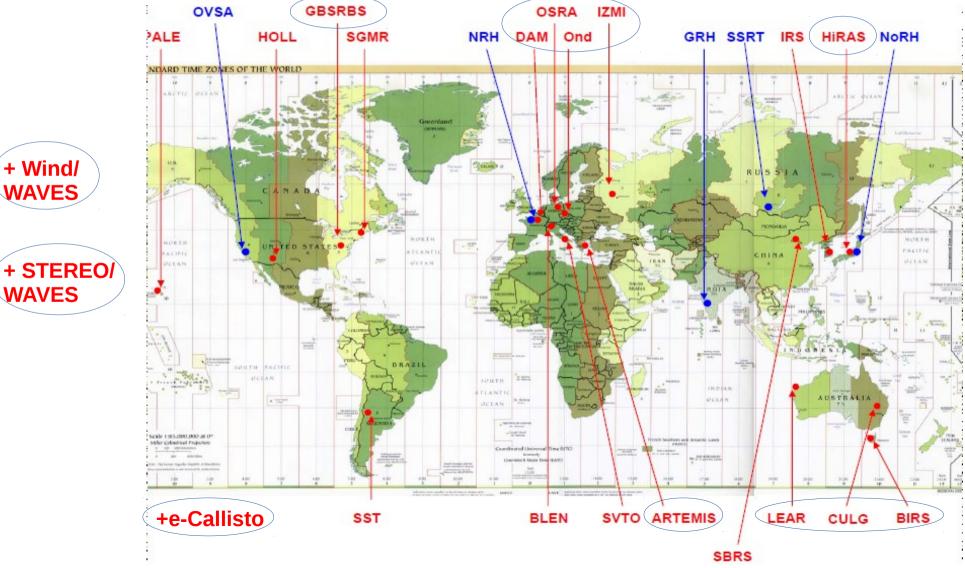
[All proton events from our list have in situ electron signature]

procedure: following Miteva et al. (2017, JASTP in press)

Solar radio bursts: Type II, III & IV

Type III (electron beams)

e.g. Wild (1950); Melrose (1985); Aschwanden et al. (1995)...


Type IV + continuum (trapped electrons)

e.g. Boishchot (1957); Kundu (1982); Stewart (1985)...

Solar radio observatories

Identification of radio burst occurrence

1. by visual inspection of quick-look dynamic radio plots

Solar radio bursts: Type II, III & IV

Identification of radio burst occurrence

2. by collecting information from radio observatory reports

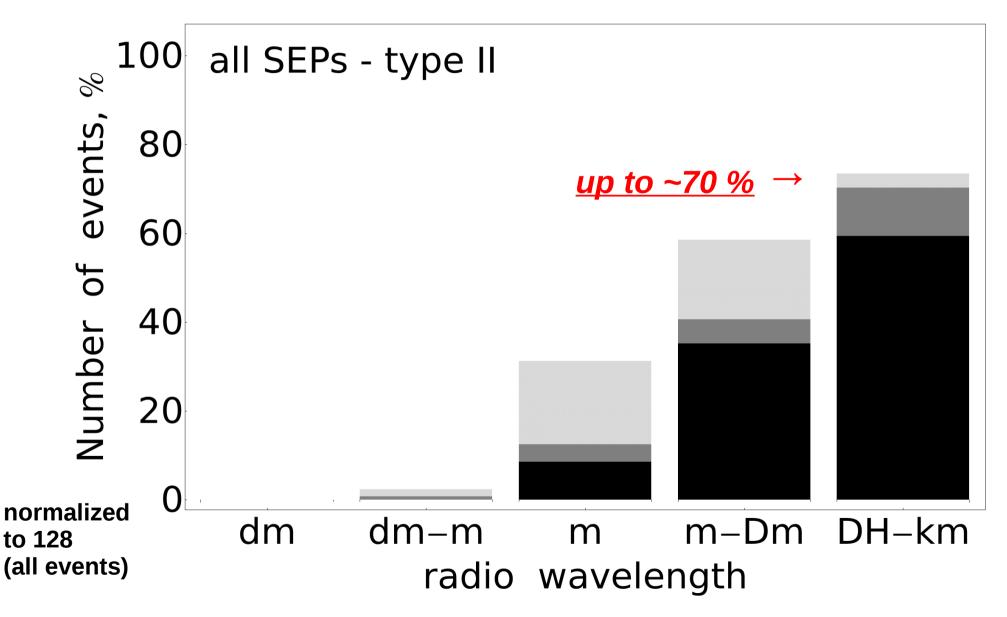
Coverage	Link/Reference
NOAA	
ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-radio	
1960-2010	/radio-bursts/fixed-frequency-listings/
1967-2011	/radio-bursts/reports/spectral-listings/
2000-2011	/radio-bursts/tables/spectral-sgd/
1996-present	ftp.ngdc.noaa.gov/STP/swpc_products/daily_reports/solar_event_reports/
Phoenix/e-Callisto	
1998-2011	http://soleil.i4ds.ch/solarradio/
	HiRAS
1994-2011	http://sunbase.nict.go.jp/solar/denpa/spe_summary/
Culgoora/Learmonth	
1992-present	http://www.sws.bom.gov.au/World_Data_Centre/1/9
	ARTEMIS (selected events)
1998-2013	http://artemis-iv.phys.uoa.gr/DataBaseForWeb/data_set.htm
	IZMIRAN (selected events)
1996-present	http://www.izmiran.ru/stp/lars/MoreSp.html
	Green bank/Bruny Island (selected events)
2004-2015	http://www.astro.umd.edu/~white/gb/index.shtml
Wind/WAVES (selected events)	
1994-2015	https://solar-radio.gsfc.nasa.gov/wind/data_products.html

Results

I. All proton sample \rightarrow Type II, III, IV

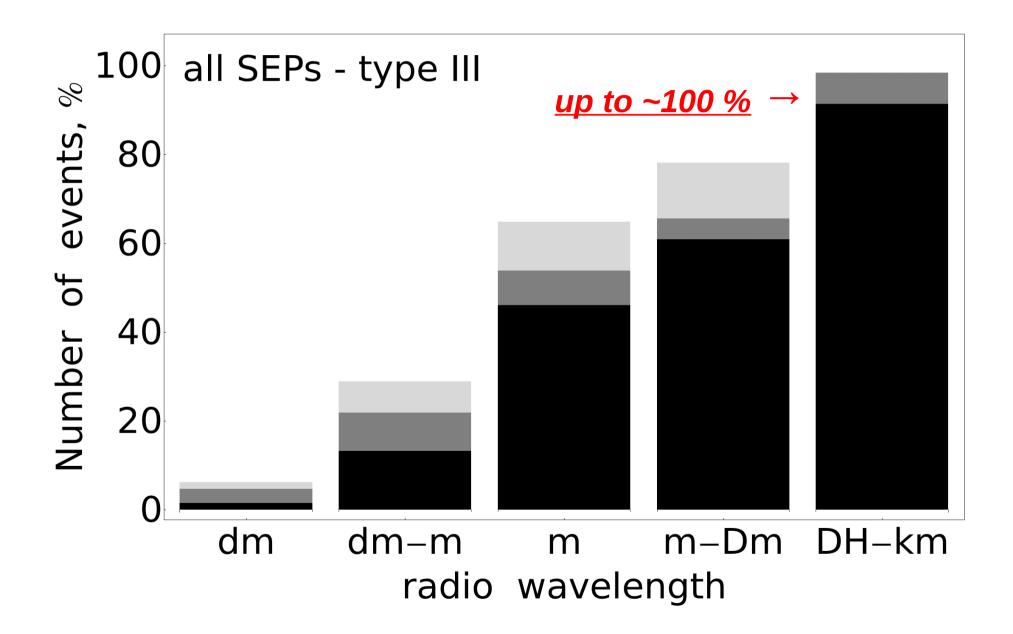
- visual identification (black-color)
- uncertain (dark-color)
- observatory reports only (light-color)

II. Trends:

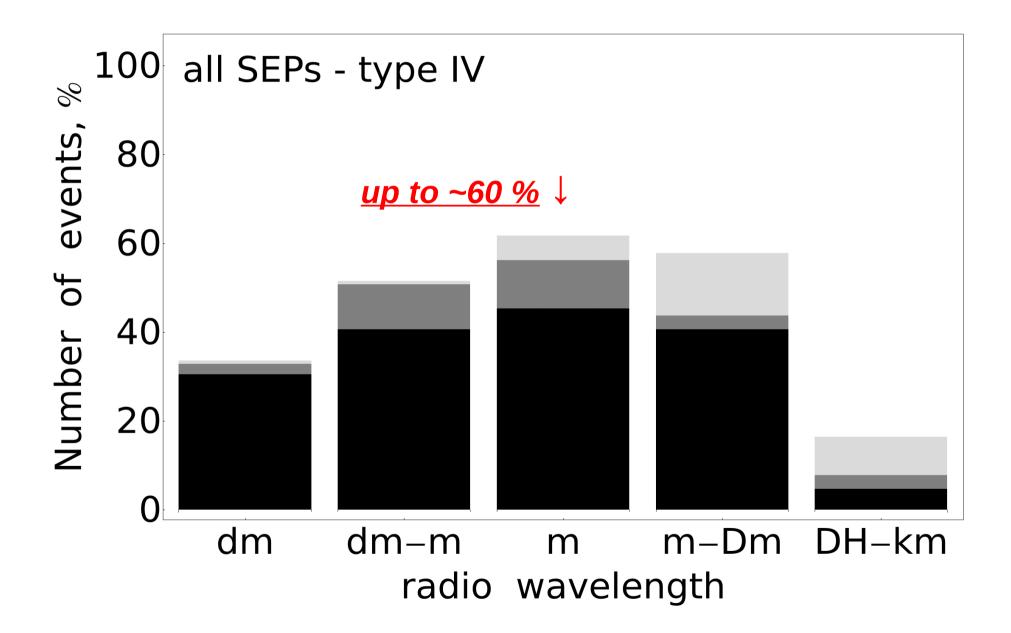

Western vs. Eastern origin of proton events → Type II, III, IV

• according to the AR (flares) and MPA (CMEs)

Strong vs. Weak proton events → Type II, III, IV


• according to the median value of the proton event sample

Results: Type II



3-1 GHz 1-0.3 GHz 300-100 MHz 100-30 MHz 30-0.01 MHz

Results: Type III

Results: Type IV

Results: W-to-E longitude

• No significant difference $(\pm \sigma)$ between radio burst occurrences with origin to the East (27 %) or the West (73 %) (exception: m-Dm type II)

• **Tendencies for stronger flare classes and faster CMEs** for burst occurring in the **East** (exception: type IV)

East: ~M3-X1.5 and ~1100-1300 km/s West: ~M3-M6 and ~1100-1200 km/s

Results: strong-to-weak protons

• **Tendencies for larger fraction** of radio burst occurrences originating from **strong** (55 %) vs. weak (45 %) **proton events**

• Tendencies for stronger flare classes and faster CMEs producing strong proton sample

Strong: \sim M3-M8 and 1300-1600 km/s Weak: \sim M3 and \leq 1000 km/s

→ Big Flare Syndrome (Kahler 1982) effect?

Future work

- 1. Solar cycle comparison (first 8 yrs): SC23 (1997–2004) vs. SC24 (2009–2016)
- 2. Timing study: delayed radio? onset of proton events \leftrightarrow onset of radio bursts

3. Spectral study: correlation? proton spectral index ↔ radio spectral index