# Heliospheric current sheet as a factor of geomagnetic activity floor variation

Simeon Asenovski

Space Research and Technology Institute Bulgarian Academy of Science



#### What is the reason of the geomagnetic disturbances when our planet "floats" in the relatively "quiet" space?

What is the Heliospheric current sheet role in the geomagnetic activity "floor"?

## Solar activity

- The sum of all variable, short and long-lived disturbances on the Sun
- sunspot, coronal holes, prominences, solar flares, CME, HSS, etc.



#### Figure 1: Solar activity

## Solar cycle variation

- Solar magnetic activity cycle is the nearly periodic 11-year change in the Sun's activity
- At solar minimum, solar magnetic field is closed to dipole nearly aligned with the rotation axis
- At solar maximum, solar magnetic field is much more complicated



Figure 2: Solar cycle variation

## Heliospheric current sheet

- dynamic object modulated by solar activity
- separating the heliosphere into two regions according to the polarity of the interplanetary magnetic field
- large scale variation through the 11-year solar cycle
  - at minimum has minimal inclination and almost matches with solar equatorial plane
  - at maximum becomes much more inclined



#### Figure 3: 3D HCS

(Hoeksema, 1995; Forsyth et al., 1997; Smith et al., 2001)

#### Heliospheric current sheet

 magnetic sector structure with alternating positive (away from the Sun) and negative (toward the Sun) polarity



Figure 4: IMF polarity

#### Geomagnetic activity

- geomagnetic field is modulated by solar activity agents (Sabine, 1852)
- ► two maxima in the ~11-year sunspot cycle: one corresponding to the sunspot maximum and a second one about two years later during the sunspot declining phase (Gonzalez et al., 1990)



Figure 5: Sunspot number (grey areas) and aa-index of geomagnetic activity (black areas)

## Geomagnetic activity and CME

- The geomagnetic activity maximum in sunspot maximum is due to the big number of coronal mass ejections (CMEs) at that time.
- The strong sporadic storms during maximum are caused by CMEs (*Tsurutani et al.*, 1992; Echer et al., 2008), and especially by magnetic clouds with strong and smoothly rotating magnetic field inside the structure providing prolonged periods of southward Bz (*Georgieva et al.*, 2006)
- Because both CMEs and sunspots are related to solar active regions, the occurrence of the CME-related storms follows the solar cycle (Gonzalez et al., 1994)



Updated 2015 Mar 18 09:25:15 UTC

NOAA/SWPC Boulder, CO USA

Figure 6: CME related geomagnetic storm

#### Geomagnetic activity and HSS

- The second maximum of geomagnetic activity is due to high speed solar wind streams (HSS), which originate from coronal holes - unipolar open magnetic field areas (Kriger et al., 1973; Sheeley Jr. et al, 1996; Tsurutani et al., 1995, 2006)
- These geomagnetic storms are relatively weaker, but recurrent and of longer duration (Borovsky and Denton, 2006)
- Coronal holes are biggest and in most geoeffective position during the sunspot declining phase (*Phillips et al., 1995*), when the second maximum in the geomagnetic activity is observed.



Figure 7: HSS related geomagnetic storm

#### Geomagnetic activity in the last four SC

- Considering the global picture of the geomagnetic disturbances most of the time (up to 60 %) during any 11-years SC, Kp is less than 5 BUT different from zero
- Even in the absence of CME and HSS there is some non-zero geomagnetic activity



#### Geomagnetic activity floor

- Feynman (1982) linked geomagnetic activity and sunspots, in a way to show that the annual average aa index can be decomposed into two functions - short (CME) and long (HSS) lived related
- Kirov et al., (2013) supplies additional component expressing the geomagnetic activity in the absence of sunspots, i.e. geomagnetic activity "floor"
- Geomagnetic activity "floor" minimal value of an averaged geomagnetic index under which the geomagnetic activity cannot fall



Figure 9: Dependence of the geomagnetic activity on the sunspot number

What is the reason of the geomagnetic disturbances when our planet "floats" in the relatively "quiet" space?

- Properties of the slow solar wind (which originate from regions near equatorial coronal streamers)
- Properties of the fast solar wind (coming from polar coronal holes)
- Conditions inside the magnetosphere
- Heliospheric current sheet

The Thickness of the Heliospheric current sheet



Figure 10: Eclipses close to the minima of cycles 12-24 (Tlatov, 2010)

## Solar wind speed vs. Helio coordinates

- Considering the CME and HSS free periods for the last four solar cycles
- The angle between the equator of the Sun, and the plane of the Earth's orbit is approximately 7,2°
- The thickness of the Heliospheic current sheet is defined as the angle between high-latitude boundaries of the large coronal streamers (*Tlatov*, 2010)



Figure 11: Solar wind speed as a function of the Heliospheric coordinates during SC22 minima

#### Solar wind speed vs. Helio coordinates

Varying thickness of the heliosheet cause variations in the relative exposure of the Earth to different solar wind drivers



Figure 12: Solar wind speed as a function of the Heliospheric coordinates during SC23 minima

#### Solar wind speed vs. Helio coordinates



Figure 13: Three-dimensional sketch of the heliospheric current sheet

#### Solar wind speed vs. geomagnetic activity



Figure 14: Dst index as a function of the solar wind speed during SC22 minima and SC23 minima

The Sector Structure of the Heliospheric current sheet

#### Heliospheric current sheet crossing

- Considering the CME and HSS free periods for ten crossing of the Helisopheric current sheet
- Using L. Svalgaard's list of the Sector Boundaries in the Solar Wind



Figure 15: Superposed epochs of the intensity of the Dst index

#### Conclusion

 Geomagnetic activity "floor" is modified by the heliospheric current sheet in sense of its crossing and shielding