Comparison of substorms observations during two solar cycles maximum: at 1999-2000 and 2012-2013

Despirak I.V., Lubchich A.A., Polar Geophysical Institute, Apatity, Russia Kleimenova N.G. Institute of the Physics of the Earth RAS, Moscow, Russia,

INTRODUCTION

We presented the comparative analysis of the substorm behavior in the periods of two solar cycles maximum (1999-2000, with Wp> 100 and 2012-2013 with Wp~60).

All considered substorms were divided into 3 types according to auroral oval dynamic.

First type - substorms which observed only in auroral latitudes ("usual" substorms);

Second type - substorms which propagate from auroral latitudes (<70º) to polar geomagnetic latitudes (>70º) ("expanded" substorms, according to expanded oval);

Third type is substorms which observed only at latitudes above ~70° in the absence of simultaneous geomagnetic disturbances below 70° ("polar" substorms, according to contracted oval).

For this analysis, we used the observations of 10-s sampled IMAGE meridian magnetometer profile data and the 1-min sampled OMNI solar wind and interplanetary magnetic field (IMF) data. There were analyzed above 1700 events of "expanded", "polar" and "usual" substorms in 1999- 2000 and in 2012-2013 years. .

Results

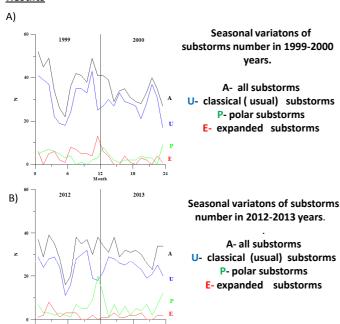


Fig.1. The results of seasonal variations of substorms during two solar cycle maximums - a)- in 1999-2000 years; b) - in 2012-2013 years

It is seen that:

- number of substorms is higher during 1999-2000 periods than during 2012-2013 periods;
- summer minimums of substorms number and spring and autumn maximums are common to both periods;
- polar substorms behavior was in opposition to other types of substorms. Number of polar substorms have It is seen that: maximum in the winter months;
- wherein it is noted that expanded substorms maximum was observed in winter 1999-2000, but not observed in winter 2012-2013.

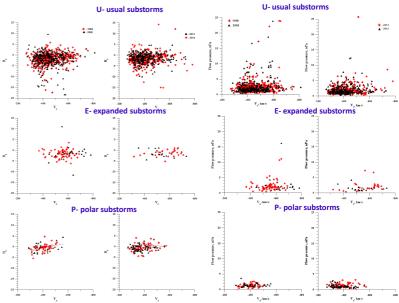
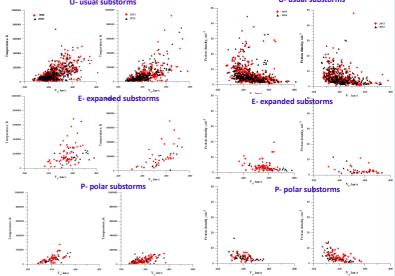



Fig. 2 Parameters of the solar wind and the IMF (B_{Z} , V_{X} , P) before substorms onsets for 1999-2000 (left column) and for 2012-2013 (right column)

nd the IMF (T, V_{x} , N) before substorms onsets for 1999-2000 (left column) and for 2012-2013 (right column)

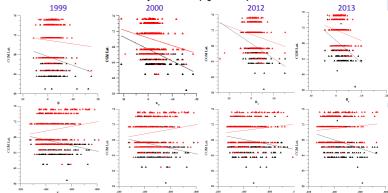


Fig. 4 Substorm onset and maximal reaching latitudes for all substorms during 1999, 2000, 2012 and 2013 periods in dependence on solar wind velosity (V_X) and B_Z component of IMF

- 1. Substorms onset latitudes for 1999-2000 years were a little lower that onset latitudes for 2012-2013 years
- 2. The latitudinal sizes of substorms in 1999-2000 years were a little more than the latituinal size of substorms during 2012-2013 years.
- 3. Significant differences in dependencies on the solar wind parameters (Vx, Bz, P, N, T) between substorms in 1999-2000 and substorms in 2012-2013 not found.