The Influence of Apr 10, 2001 CME on the Magnetosphere

D. Beșliu-Ionescu¹ **M.** Mierla^{2,1} and **G.** Maris Muntean¹

¹Institute of Geodynamics "Sabba S. Ștefănescu" of the Romanian Academy ²Royal Observatory of Belgium

June 3, 2015

CME ICME Geomagnetic Storm

Apr 10, 2001 - 05:30 UT

JHelioviewer

cdaw.gsfc.nasa.gov/CME_list/

・ 同 ト ・ ヨ ト ・ ヨ ト

$$V=2411~\text{km/s}$$
 ; a $=211~\text{km/s}^2$; $V_{20\text{R}\odot}=2974~\text{km/s}$

э

CME ICME Geomagnetic Storm

Solar Source – Flare

05:06-05:26-05:42 UT

AR 9415 ($\beta\gamma\delta$) - X2.3

CME ICME Geomagnetic Storm

Apr 11 22:00 UT – Apr 13 7:00 UT

 $V_{mean} = 640 \text{ km/s}$ $V_{max} = 740 \text{ km/s}$

→ 3 → < 3</p>

э

Solar Influences on Magnetosphere, Ionosphere and Atmosphere - 7th Workshop D.Beşliu-Ionescu et al.: The Influence of Apr 10, 2001 CME on Magnetosphere

CME – ICME – GS Theoretical Computations Geomagnetic Storm

Dst – Sudden Commencement – Apr 11 13:43 UT

- ₹ 🖹 🕨

-

CME ICME Geomagnetic Storm

Dst – Sudden Commencement – Apr 11 13:43 UT

< ∃ >

-

CME ICME Geomagnetic Storm

Dst – Sudden Commencement – Apr 11 13:43 UT

- ₹ 🖹 🕨

-

Probability Computation

Modified version of the Srivastava (2005) logistic regression model to predict the occurence of intense and super-intense GS ($D_{st}<$ -150 nT)

There are 9 independent variables - CME projected speed, acceleration, neutral line orientation, flare importance,

position (latitude and longitude), magnetic classification of AR, average magnetic field and the B_z component of

the magnetic field halo, flare bin, ram pressure

$$\Pi = \frac{1}{1 + e^{-zi}}, \text{ where }$$
$$Zi = b_0 + b_1 \times x_{i1} + \dots + b_j \times x_{ij}$$

where Πi - probability of the occurrence of intense geomagnetic storm given by the i-th observation of the solar variable

 b_j (j=0 to J) - model parameters (regression coefficients) x_{ij} (i=0 to I; j=0 to J) - the independent variables; I and J are total number of observations

In SC23 there were 25 ICMEs to be followed by intense and super-intense geomagnetic storms (-200 nT < D_{st} < -150 nT, respectively D_{st} < -200 nT). We have trained the model with 21 events, and used the remaining 4 for validation.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Probability Computation

Modified version of the Srivastava (2005) logistic regression model to predict the occurence of intense and super-intense GS ($D_{st}<$ -150 nT)

There are 9 independent variables - CME projected speed, acceleration, neutral line orientation, flare importance,

position (latitude and longitude), magnetic classification of AR, average magnetic field and the B_z component of

the magnetic field halo, flare bin, ram pressure

$$\Pi = \frac{1}{1 + e^{-zi}}, \text{ where }$$
$$Zi = b_0 + b_1 \times x_{i1} + \dots + b_j \times x_{ij}$$

where Πi - probability of the occurrence of intense geomagnetic storm given by the i-th observation of the solar variable

 b_j (j=0 to J) - model parameters (regression coefficients) x_{ij} (i=0 to I; j=0 to J) - the independent variables; I and J are total number of observations

In SC23 there were 25 ICMEs to be followed by intense and super-intense geomagnetic storms (-200 nT < D_{st} < -150 nT, respectively D_{st} < -200 nT). We have trained the model with 21 events, and used the remaining 4 for validation.

For Apr 10, 2001 CME: 100% to have an intense GS

GS Probability Energy Transfer

 $\epsilon - E_{IN}$

Akasofu, 1981

$$\epsilon = 10^7 V B^2 l_0^2 \sin^4\left(rac{ heta}{2}
ight) [J/s]$$

Wang et al, 2014

$$E_{IN} = 3.78 \times 10^7 \; n_{SW}^{0.24} \; V_{SW}^{1.47} \; B_T^{0.86} \; \left(sin^{2.7} \left(rac{ heta}{2}
ight) + 0.25
ight) [J/s]$$

æ

伺 ト イヨト イヨト

GS Probability Energy Transfer

$\epsilon - E_{IN} - Results$

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

GS Probability Energy Transfer

$\epsilon - E_{IN} - Results$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

GS Probability Energy Transfer

$\epsilon - E_{IN} - Results$

Solar Influences on Magnetosphere, Ionosphere and Atmosphere - 7th Workshop D.Beşliu-Ionescu et al.: The Influence of Apr 10, 2001 CME on Magnetosphere

・ 同 ト ・ ヨ ト ・ ヨ ト

э

GS Probability Energy Transfer

PC – |B|

э

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

• Apr 10, 2001 FH CME was geo-effective

- CME source location was close to solar centrum
- SC registered after 32 h
- SC correlated to sudden increase in ρ , V and $|\mathsf{B}|$
- GS main phase \iff negative values Bz
- Probability of Apr 10, 2001 CME to be geo-effective = 100%
- Energy transfer does not resume to main phase only
- Energy transfer relates to |B| and PC index excess

- Apr 10, 2001 FH CME was geo-effective
- CME source location was close to solar centrum
- SC registered after 32 h
- SC correlated to sudden increase in ρ , V and $|\mathsf{B}|$
- GS main phase \iff negative values Bz
- Probability of Apr 10, 2001 CME to be geo-effective = 100%
- Energy transfer does not resume to main phase only
- Energy transfer relates to |B| and PC index excess

- Apr 10, 2001 FH CME was geo-effective
- CME source location was close to solar centrum
- SC registered after 32 h
- SC correlated to sudden increase in ρ , V and $|\mathsf{B}|$
- GS main phase \iff negative values Bz
- Probability of Apr 10, 2001 CME to be geo-effective = 100%
- Energy transfer does not resume to main phase only
- Energy transfer relates to |B| and PC index excess

- Apr 10, 2001 FH CME was geo-effective
- CME source location was close to solar centrum
- SC registered after 32 h
- \bullet SC correlated to sudden increase in $\rho,$ V and $|\mathsf{B}|$
- GS main phase \iff negative values Bz
- Probability of Apr 10, 2001 CME to be geo-effective = 100%
- Energy transfer does not resume to main phase only
- Energy transfer relates to |B| and PC index excess

- Apr 10, 2001 FH CME was geo-effective
- CME source location was close to solar centrum
- SC registered after 32 h
- \bullet SC correlated to sudden increase in $\rho,$ V and $|\mathsf{B}|$
- GS main phase \iff negative values Bz
- Probability of Apr 10, 2001 CME to be geo-effective = 100%
- Energy transfer does not resume to main phase only
- Energy transfer relates to |B| and PC index excess

A 30 A 4

- Apr 10, 2001 FH CME was geo-effective
- CME source location was close to solar centrum
- SC registered after 32 h
- SC correlated to sudden increase in ρ , V and $|\mathsf{B}|$
- GS main phase \iff negative values Bz
- Probability of Apr 10, 2001 CME to be geo-effective = 100%
- Energy transfer does not resume to main phase only
- Energy transfer relates to |B| and PC index excess

4 3 b

- Apr 10, 2001 FH CME was geo-effective
- CME source location was close to solar centrum
- SC registered after 32 h
- SC correlated to sudden increase in ρ , V and $|\mathsf{B}|$
- GS main phase \iff negative values Bz
- Probability of Apr 10, 2001 CME to be geo-effective = 100%
- Energy transfer does not resume to main phase only
- \bullet Energy transfer relates to $|\mathsf{B}|$ and PC index excess

4 3 b

- Apr 10, 2001 FH CME was geo-effective
- CME source location was close to solar centrum
- SC registered after 32 h
- SC correlated to sudden increase in ρ , V and $|\mathsf{B}|$
- GS main phase \iff negative values Bz
- Probability of Apr 10, 2001 CME to be geo-effective = 100%
- Energy transfer does not resume to main phase only
- \bullet Energy transfer relates to $|\mathsf{B}|$ and PC index excess

Acknowledgments

Joint project "Solar wind during the period of a deep minimum and its impact on the geomagnetic activity" Romanian and Bulgarian Academy

Thank you!

Acknowledgments

This research was supported from the CNCSIS project IDEI, No. 93/5.10.2011

A 10

→ Ξ → < Ξ</p>