

Operation of the Space Environmental viewing and Analysis Network (SEVAN) in _____24-th Solar Activity Cycle

T. Karapetyan and A. Chilingarian Yerevan Physics Institute, Yerevan, Armenia, Alikhanyan Brothers 2, Yerevan 375036, Armenia, www.crd.yerphi.am

SEVAN home page: http://crd.yerphi.am/SEVAN_Data

Starting of SEVANs in Bulgaria, Croatia, India and Slovakia

Figure 1. SEVAN Detector in Mussala mountain research station of Nuclear Physics Institute of Bulgarian Academy of Sciences

Figure 2. SEVAN Detector in Zagreb Observatory, Croatia

Figure 3. SEVAN Detector in India Jawaharlal Nehru University

Figure 4. SEVAN Detector in Slovakia, Lomnicky stit

Figure 4 Armenian and Croatian Physicists at Zagreb observatory; from left to right: Armenian and Croatian Physicists at Zagreb observatory; from left to right Darije Maricic, Dragan Rosa, Karen Arakelyan, Gagli: Hovsepyan and Ivan Romstajn

Modulation of Galactic Cosmic Rays

?	Gamma@ay?	Electron 🛛	Muon	Neutron 🛛	Proton			
Registered particles Purity by detecting coincidences								
Low@nergy@harged@articles[[100]]?	11.6052	43.3002	37.3802	2.8382	4.8042			
Neutral Particles [1010] 🛛	50.6122	8.8372	4.4942	35.071 2	0.9722			
High@nergy@harged@articles@101]+[111]	0.0022	0.1062	94.9042	0.8082	4.0772			
Registered particles Purity by Count Pate Of The BE cintillators 2								
Upper Detector 2	7.6162	28.9522	56.0802	2.4482	4.8142			
Middle Detector 2	11.5502	5.2232	67.9132	11.038 2	4.1672			
Lower Detector 2	2.6962	4.4382	85.8732	3.2672	3.6342			

Purity-Efficiency Diagram

SEVAN Count Rates

Aragats 3200 a.s.l.	ArNM 18NM64	SEVAN [100]	SEVAN [010]	SEVAN [111]
Relative Error	0.0068	0.0081	0.0218	0.0192
1/sqrt(N)	0.0049	0.0078	0.0223	0.0194

	YerPhl	(1200m)	m) NorAmberd (2000m)		Aragats (3200m)		Zagreb, Croatia (130m)	Moussala, Bulgaria, (2925 m)
Type of secondary particle	Measured count rate	Simulated count rate	Measured count rate	Simulated count rate	Measured count rate	Simulated count rate	Measured Count rate	Measured count rate
Low energy charged particles (100)	8862±108	7202	11593±161	10220	16581±130	17202	6415±84	17479±136
Neutral particles (010)	363±19	359	690±27	795	2011±46	1584	316±18	1115±38
High energy muon (111 & 101)	4337±67	5477	4473±99	5548	5534±64	8051	3824±64	6315±78

Barometric coefficients, count rates and relative errors of SEVAN monitors

Monitor	Altitude (m)	Rc (Gv)	Barometric Coeff. %/mb	Correlation Coefficient	Count rate [min]	Relative error	$\frac{1}{\sqrt{N}}$
Aragats SEVAN Low energy charged particles (Coincidence 100)	3200	7.1	-0.5±0.018	0.995	15389	0.007	0.0080
Aragats SEVAN High energy muons (Coincidence 111+ Coincidence 101)	3200	7.1	-0.351±0.038	0.96	3868	0.014	0.0161
Aragats SEVAN neutrons (Coincidence 010)	3200	7.1	-0.511±0.018	0.995	1959	0.019	0.0225
Nor Amberd SEVAN Low energy charged particles (Coincidence 100)	2000	7.1	-0.281±0.022	0.957	5941	0.013	0.0129
Nor Amberd SEVAN High energy muons (Coincidence 111+ Coincidence 101)	2000	7.1	-0.242±0.022	0.952	1988	0.026	0.0224
Nor Amberd SEVAN neutrons (Coincidence 010)	2000	7.1	-0.54±0.070	0.899	674	0.037	0.0385
Yerevan SEVAN Low energy charged particles (Coincidence 100)	1000	7.1	-0.3±0.014	0.987	9446	0.010	0.0102
SEVAN High energy muons (Coincidence 111+ Coincidence 101)	1000	7.1	-0.149±0.035	0.765	4714	0.015	0.0145
Yerevan SEVAN neutrons (Coincidence 010)	1000	7.1	-0.4±0.039	0.943	425	0.048	0.0485

2 types of GLE detected by the SEVAN basic unit (simulation)

5min simulated enhancements in the Upper and Middle layers of the SEVAN basic unit.

Detector Layer	Solar Protons	Solar Neutrons	
Upper 5cm scintillator	4.8 σ	2.6 σ	
Middle 25 cm scintillator	1.7 σ	6.4 σ	

High Solar Activity in March 2012

CME Appearance Date Time [UT]	CME Type	Linear / Apparent Speed [km/s]	Source Location	X-Ray Importance	Flare Onset [UT]	CME Arrival Date Time [UT]
05.03.2012 04:00	Halo	1531	N17E52	X1.1	03:17	07.03.2012 ~03:47
07.03.2012 00:24	Halo	2684	N17E27	X5.4	00:02	08.03.2012 ~10:53
07.03.2012 01:30	Halo	1825	N17E27			
09.03.2012 04:26	Halo	950	N17W03	M6.3	03:22	11.03.2012 ~12:52
10.03.2012 18:12	Halo	1379	N17W24	M8.4	17:15	12.03.2012 ~08:45
13.03.2012 17:36	Halo	1884	N17W66	M7.9	17:12	15.03.2012 ~12:42

March 2012 Fd: on-line data from all SEVANs and all NMs in: http://adei.crd.yerphi.am/

and the second s

🚳 © Cosmic Ray Division of Yerevan Physics Institute Graph | Downloads | WiKi March, 2012 {Time} Source Axes Experiment All Measurements ÷. Window Custom ÷ Start 3/6/2012 0:0:0 End 3/13/2012 0:0:0 Apply {Info} Source Tree Search Plot Export Aggregator + Type: Scatter Plot Sum, dead time 1250us \$ SEVAN Aragats, Coinsidence 111 + 2012; March 6, 00:00:00 - March 13, 00:00:00 3.6e+3 R = 0.96 98 @ 3.6e+3 10-minute time series of March 2012 Fds 3.6e+3 3 5e+1 Black ArNM 1250 usec dead time 96 Blue SEVAN 111 - muons with energy > 200 MeV 63.4e+3 VAN ANA 3.4e+3 1 2.7e+4 2.8e+4 2.9e+4 3.0e+4 3.1e+4 3.2e Sum, dead time 1250us 94 From: 2012-03-06T00:00:00+00:00 To: 2012-03-13T00:00:00+00:00 Resolution: 3600 Number of events used:168 92 90 88 Mar 06, 00:00 Mar 07, 00:00 Mar 08, 00:00 Mar 09, 00:00 Mar 10, 00:00 Mar 11, 00:00 Mar 12, 00:00 Mar 13, UT

🚳 © Cosmic Ray Division of Yerevan Physics Institute Graph Downloads WiKi March, 2012 Source {Time} Axes Experiment All Measurements ÷ Window Custom \$ Start 3/6/2012 0:0:0 10 End 3/13/2012 0:0:0 Apply {Info} Search Source Tree Export Aggregator Plot ; Type: Scatter Plot SEVAN Aragats, Coinsidence 010 + SEVAN Moussala, Coinsidence 010 + 2012; March 6, 00:00:00 - March 13, 00:00:00 R = 0.67 36+ 96 10-minute time series of March 2012 Fds EVAN Mo 94 Black SEVAN Aragats 010 neutral CR Blue SEVAN Mousala 010 neutral CR a barra barra 2.3e+3 2.4e+3 2.4e+3 2.4e+3 2.5e+3 2.6e+3 2.6e SEVAN Aragats, Coinsidence 010 92 From: 2012-03-06T00:00:00+00:00 To: 2012-03-13T00:00:00+00:00 Resolution: 3600 Number of events used:168 90 88 86 84 L Mar 06, 00:00 Mar 07, 00:00 Mar 08, 00:00 Mar 09, 00:00 Mar 10, 00:00 Mar 11, 00:00 Mar 12, 00:00 Mar 13, UT

SEVAN calibration with gamma rays from Thunderstorm Ground Enhancements (TGEs): Electrons born gamma rays and gamma

rays – neutrons.

Deficit of high energy muonspositive muons stop: evidence of large potential drop in thundercloud

Count rate of muons (%)

The hybrid particle detectors, measuring neutral and charged fluxes provide following advantages upon existing detector networks measuring single species of secondary CR:

- Cheap and simple operation;
- Probe different populations of primary cosmic rays with rigidities from few GV (neutrons) up to 20-30 GV (muons);
- Reconstruct SCR spectra and determine position of the spectral "knees";
- Classify GLEs in "neutron" or "proton" initiated events;
- Significantly enlarge the reliability of Space Weather alerts due to detection of 3 particle fluxes instead of only one in existing neutron monitor and muon telescope world-wide networks.
- Detect Thunderstorm Ground Enhancements both electron and gamma ray fluxes

