Comparison of the magnetic field measurements in solar off-limb prominences with model calsulations usjng fizEl code

Botygina Olga, Masliukh V.. Lozitsky V. Astronomical Observatory of Taras Shevchenko National University of Kyiv

Prominences

Observations of prominences(1)

Observations of prominences (2)

Observations of prominences (3)

Number	Date	Time of exposition	Notes
1	24.07 .1981	$6: 30$ UT	Active prominence, sunspots group 345
2	24.07 .1999	$6: 49$ UT	Active prominence
3	12.07 .2004	$8: 48: 50$ UT	Active prominence, which appear after M1.6 solar flare
4	26.09 .2011	$11: 23: 25$ UT	Quiescent prominence, sunspots group 1295
5	20.10 .2011	$09: 15: 25$ UT	Quiescent prominence, sunspots group 1316
6	07.11 .2011	$11: 55: 25$ UT	Quiescent prominence, sunspots group 1343
7	09.11 .2011	$11: 26: 17$ UT;	Quiescent prominence, sunspots group 1343

Obseryations of prominences (4)

24.07.1999, 078, UP', SOHO EIT HeII (30. 11 mm),
 ittpe///sohodatainascom. nasa,gov

Stokes parameters

I - total intensity
Q - linearly polarized (horizontal or vertical)
U - linearly polarized ($+45^{\circ}$ or -45°)
V - circularly polarized (left-hand or right-hand)

Observations of prominences(5)

Observations of prominences(6)

Observations of prominences(7)

Observations of prominences(8)

Observations of prominences(9)

Observations of prominences(10)

Distance from line centre

HAZEL (HAnle and ZEeman Light)

is a computer program for the synthesis and inversion of Stokes profiles caused by the joint action of atomic level polariztion and the Hanle and Zeeman effects. It is based on the quantum theory of spectral line polarization, which takes into account rigorously all the relevant physical mechanisms and ingredients: optical pumping, atomic level polarization, level crossings and repulsions, Zeeman, Paschen-Back and Hanle effects (A. Asensio Ramos et al., ApJ, 2008).

HAZEL

$\frac{d}{d s} \boldsymbol{I}(\nu, \boldsymbol{\Omega})=\boldsymbol{\epsilon}(\nu, \boldsymbol{\Omega})-\mathbf{K}(\nu, \boldsymbol{\Omega}) \boldsymbol{I}(\nu, \boldsymbol{\Omega})$

$\epsilon(\nu, \boldsymbol{\Omega})=\left(\epsilon_{I}, \epsilon_{Q}, \epsilon_{U}, \epsilon_{V}\right)^{T} \mathbf{K}=\left(\begin{array}{cccc}\eta_{I} & \eta_{Q} & \eta_{U} & \eta_{V} \\ \eta_{Q} & \eta_{I} & \rho_{V} & -\rho_{U} \\ \eta_{U} & -\rho_{V} & \eta_{I} & \rho_{Q} \\ \eta_{V} & \rho_{U} & -\rho_{Q} & \eta_{I}\end{array}\right)$
$\frac{d}{d t} \rho_{Q}^{K}\left(J, J^{\prime}\right)=$

$$
-2 \pi i \sum_{K^{\prime} Q^{\prime}} \sum_{J^{\prime \prime \prime} J^{\prime \prime \prime}} N_{\beta L S}\left(K Q J J^{\prime}, K^{\prime} Q^{\prime} J^{\prime \prime} J^{\prime \prime \prime}\right)^{\beta L S} \rho_{Q^{\prime}}^{K^{\prime}}\left(J^{\prime \prime}, J^{\prime \prime \prime}\right)
$$

$+\sum_{\beta_{l} L_{l} K_{l} Q_{J} J_{l} J_{l}^{\prime}} \beta_{l} L_{l} \rho_{Q_{l}}^{K_{l}}\left(J_{l}, J_{l}^{\prime}\right) \mathbb{T}_{A}\left(\beta L S K Q J J^{\prime}, \beta_{l} L_{l} S K_{l} Q_{l} J_{l} J_{l}^{\prime}\right)$
$+\sum_{\beta_{u} L_{u} K_{u} Q_{u} J_{u} J_{u}^{\prime \prime}} \beta_{u} L_{u} S_{\rho_{Q_{u}}}^{K_{u}}\left(J_{u}, J_{u}^{\prime}\right)\left[\mathbb{T}_{E}\left(\beta L S K Q J J^{\prime}, \beta_{u} L_{u} S K_{u} Q_{u} J_{u} J_{u}^{\prime}\right)\right.$
$\left.+\mathbb{T}_{S}\left(\beta L S K Q J J^{\prime}, \beta_{u} L_{u} S K_{u} Q_{u} J_{u} J_{u}^{\prime}\right)\right]$
$-\sum_{K^{\prime} Q^{\prime} J^{\prime \prime} J^{\prime \prime \prime}} \beta L \rho_{Q_{Q^{\prime}}}^{K^{\prime}}\left(J^{\prime \prime}, J^{\prime \prime \prime}\right)\left[\mathbb{R}_{A}\left(\beta L S K Q J J^{\prime} K^{\prime} Q^{\prime} J^{\prime \prime} J^{\prime \prime \prime}\right)\right.$
$\left.+\mathbb{R}_{E}\left(\beta L S K Q J J^{\prime} K^{\prime} Q^{\prime} J^{\prime \prime} J^{\prime \prime \prime}\right)+\mathbb{R}_{S}\left(\beta L S K Q J J^{\prime} K^{\prime} Q^{\prime} J^{\prime \prime} J^{\prime \prime \prime}\right)\right]$.

Modelling

As a typical physical conditions of observed offimb prominences were for I profiless
height above the Sun's disk 10 ", background $\mathrm{I}=0$, optical depth $\mathrm{t}=1$, damping $\mathrm{a}=0$, velocity of turbulent inotions $\mathrm{V}=0 \mathrm{~km} / \mathrm{s}$, macroscopic yelociey $=0$ ku/s, horirontal magnetic field of 100 G ; for V profiles:
height above the Sun's disk10", background $\mathrm{I}=0$, optical depth $=1$, damping $\mathrm{a}=0$, yelocity of turbulent motions $\mathrm{V}=0 \mathrm{~km} / \mathrm{s}$, horizontal magnetic fielf of 100 G

Results of D3 HeI modelling(1)

Results of D3 HeI modelling (2)

Results of H alpha modelling (1)

Results of H alpha modelling (2)

Results of D3 HeI modelling (3)

Results of H alpha modelling (3)

Conclusions (1)

According to obtained data in obseryed active prominences the averaged magnetic field was in the range of -600 to $+1500 G$ (the average measurement error 100 G).
The anti-correlation effect of magrietic fields on the lines D3 and H alpha was found in case of active prominences.

Conclusions (2)

The amplitude values of the local magnetic field of quiescent prominences were in the rainge of 0 to 1240 G fior the line $6563 \AA$, and from 0 to 1220 G for the line $5875,6 \AA$. In contrast to the case of an active prominences, anticorrelation effiect of the measured values of the magnetic field in D3 and H alpha was not obseryed in quiescent prominences.

