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The primordial energy release takes place in the solar corona above an active region at the
height 15 - 30 thousands kilometers. Flare energy accumulation can occur in the current
sheet magnetic field created by disturbances focusing in the vicinity of an X-type singular
line. Majority of others solar flare mechanisms are based on assumption of a magnetic rope
appearance in the corona. To define what mechanism is responsible for solar flare, the 3D
MHD simulations are done in the solar corona without any assumptions about the flare
physics. The initial and boundary conditions are taken from observations of a real active
region before the flare. The main goal of MHD simulation in the solar corona is finding-out of
the physical mechanism of solar flare. The simulation shows that the current sheet appears
in the preflare state in the corona above an active region. The electrodynamical model of the
solar flare based on current sheet mechanism, which explains main flare manifestations, is
proposed. The positions of sources of X-ray radiation can be found from magnetic field
configuration obtained by MHD simulation. According to the solar flare electrodynamical
model the position of thermal X-ray is situated in the current sheet, and positions of
nonthermal hard X-rays are places of crossing of photosphere with the magnetic lines,
which are going out of the current sheet. The graphical system is developing, which can find

these positions of sources of X-ray radiation.
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SOLAR FLARE OCCURS IN THE SOLAR CORONA ON
HEIGHTS 15 - 30 THOUSANDS KILOMETERS, WHICH
IS 1/40 — 1/20 OF SOLAR RADIUS.
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Electrodynamic model of solar flare

Igor M. Podgorny using results of
measurements on the satellite
Intercosmos-Bulgaria-1300
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Flare meshanizms
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Now our aim is: To find solar flare mechanism directly by
MHD simulation in real active region.
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Earlier: Hypothesized the mechanism of the solar flare, which
is then tested.
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The numerical 3D simulation in corona above active
region. The system of MHID equations for
compressible plasma with dissipative terms and
anisotropy of thermal conductivity is solved.
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The PERESVET program
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The principal difference between the numerical
methods Iimplemented in the  program
PERESVET and others. The main goal is to build
the mostly stable finite-difference scheme.
Stability must remain for maximally possible step
Atf, to accelerate calculations maximally. The
scheme must be stable even, if the Courant
condition (AtV,/Ax < 1) is violated, which is
reached only for implicit schemes. But here
there Is no purpose to achieve high precision of
approximation of differential equations by finite-
difference scheme.
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In the PERESVET program: it
e Finite-difference scheme is upwind for diagonal | ‘to |
terms. it

e The scheme is absolutely implicit, it is solved +» FI_ j M (F+1) ﬁ; (z;> ﬁ;
. . . u; V ( )
by iteration method (AtV,/Ax<1 is not necessary).

e The scheme is conservative relative to maanetic flux [divB1=0
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Other methods: ﬁtﬁ
e Explicit finite-difference schemes ArEEn g
e Often Godunov type (Riemann waves) W W 7\, (W W‘I . )

eThe special methods are used to obtain high order

approximation (FCT, TVD)

e Also Lagrangian schemes with further recalculation by interpolation on each
step.

e Some schemes are also conservative relative to magnetic flux [divB]=0, but with
symmetrical approximation VxB.
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Initial potential magnetic field
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On the net corresponded to conservative relative to magnetic
flux finite-difference scheme for solving MHID equations
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Previous MHD simulations performed in the strongly
compressed time scale. To perform MHD simulations
in real time scale it is necessary to accelerate
calculations: The scheme should remain stable for a
large time steps.

Last modernizations of numerical methods

Modernization of approximation of the dissipative term
is proposed to [divB] — 0 ( (6divB/ot = A(divB) )

To improve stability of the finite-difference scheme the method of
boundary conditions setting on the photosphere is modernized.

Two corrections of the initial potential field to
decrease |[div B]|
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The firs results of real time simulation of active region
after all modernizations of numerical methods show that
to calculate during several days the active region
evolution during one day it is necessary to have
supercomputer which calculates 100 times faster than

modern personal computer (double core processor 1.6
GHz).

To use the simulations for improving the solar flare
prognosis the simulated evolution must be faster than
real active region evolution, so it should be used
supercomputer 104 times faster than personal computer.



Parallelizing of
X iterations during
MHD equations solvin
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values transfer near
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Analogicallv it is possible to parallelize solving of Laplace
equation A@=0 to find of initial potential field and finding of
boundary conditions of MHD equations



Modernization of
X graphical system
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To study the physical processes during solar
flares and for improving of solar flare prognosis
on the basis of understanding its physical
mechanism, it Is necessary to solve further
problems:

1. Real-time MHD simulation of flare situation
in active region — application of supercomputer,
parallelizing.

2. Modernizing of graphical system, which
permits to find fast possible positions of flare
emission sources from MHD simulation results.
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