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Introduction
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Structure Parallel bands Single plume
Appearance Extending from north From south
Alignment Northwest-southeast North-south
Propagation Toward southwest Westward
Wavelength & period 100-300 km, ~1 hr Not periodic
Theory Perkins Instability *+°! Rayleigh-Taylor !
Occurs when Kp is Low High




Method

» F-region events from the Penn State All-sky Imager were
categorized according to type (MSTID or plume), depletion
Intensity (weak, moderate, intense), and start/end times.

» The 1mager results were then analyzed according to solar
wind and geomagnetic conditions between 2003 and 2008.

» Magnetospheric state parameters used In this study (Kp, Dst,
AE, SW B, SW Bz, SW E, SW V, SW P) were obtained from
the NASA Magnetospheric State Query System (MSQS).

» Each parameter is first averaged over the time duration of
each event observed with the all-sky imager and then over all
such MSTID or plume events.



Results

Type Plume MSTID

Intensity | high | total | moderate | moderate | total | high

#ofevents | 11 | 23 12 88 125 | 37

Parameter Units
Kp 4,79 | 3.84 2.97 1.84 1.81 | 1.75
AE 654 | 415 203 182 171 | 144 | nT
Dst -86 | -58 -30 -15 -13 | -8 nT
SWV 542 | 520 506 451 452 | 458 | km/s
SW E 39 | 1.9 0.5 -0.1 -0.2 | -0.5 | mV/m
SW B 15.1 ] 10.6 5.9 5.2 53 | 56 | nT
SWBz |-59-28 -0.8 0.2 04 | 09 | nT
SWP 4,10 | 3.15 2.28 1.97 1.94 | 1.87 | nPa
SW N 6.26 | 5.46 4,72 5.36 5.11 | 454 | c¢cm>
SWT | 128 | 127 126 120 123 | 131 | 10°K

» The results suggest a relation between the geomagnetic state

parameters and the occurrence of plumes and MSTIDs.




Occurrence Rate

Occurrence of MSTIDs and Plumes vs Kp
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Occurrence Rate

Occurrence of MSTIDs and Plumes vs Dst
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Occurrence Rate
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Occurrence Rate

Occurrence of MSTIDs and Plumes vs SW B
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Occurrence Rate

Occurrence of MSTIDs and Plumes vs SW Bz
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Occurrence Rate

Occurrence of MSTIDs and Plumes vs SW E

M MSTIDs M Plumes

100%

80%

60%
40% -
20% -

0% -

<1 -1,-0.5] -0.5,0] 0,0.5] 0.5,1]

Average Electric Field (mV/m)

>1




Occurrence Rate

Occurrence of MSTIDs and Plumes vs SWV
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Occurrence Rate

Occurrence of MSTIDs and Plumes vs SW P

60%

50%

0-1 1-2 2-3 3-4 >4

40%
30%
20%
10%

0%

B MSTIDs M Plumes

Average Solar Wind Flow Pressure (nPa)




Occurrence Rate

Occurrence of MSTIDs and Plumes vs SW N
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Occurrence Rate

Occurrence of MSTIDs and Plumes vs SW T
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Conclusions

» Although individual midlatitude plumes tend to occur during
geomagnetic storms, they might also occur during quiet times.

» 0On the other hand, MSTIDs hardly occur during storms.

» In general, plumes and MSTIDs tend to occur at high and
low Kp, Dst (magnitude), solar wind speed, pressure, magnetic
and electric field (magnitude), respectively.

» In addition to the occurrence rate, the intensity of MSTIDs
and plumes are also affected by the magnetospheric state.

» S0, based on the magnetospheric parameters, it might be
possible to tell whether an ambiguous depletion event (e.g., In
the all-sky or satellite data) is likely a plume or MSTID.




Conclusions

» S0, even If these F-region irregularities are seeded at lower
altitudes (e.g., by GWSs), their occurrences are clearly affected
by the condition of the magnetosphere and solar wind.

» Recent studies suggest a connection between ionospheric
waves and the solar wind oscillations * !,

» Are various properties of MSTIDs or plumes affected by the
magnetospheric state?

» Since parameters measure different parts of the
magnetosphere, time delays might reveal the sequence of
events from solar wind to ionosphere.
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Introduction

MSTIDs Gravity Waves
Structure Parallel bands Waves, Ripples
Region F-region Mesosphere
Alignment Northwest-southeast Any direction

Propagation

Toward southwest

Any direction

Wavelength & period ~200 km, ~1 hr ~20 km, ~10 min
Theory Perkins Instability Gravity Wave Theory
Occurs when Kp Is Low Any Kp
Airglow A 630 nm 557.7 nm
Airglow height 200-300 km 90-105 km

Airglow chemistry

O"+0,2 0, +0
Charge Exchange
0,)+e >0 +0

Dissociative
Recombination

O+0+M=>0, + M
0, +0=>0,+0
O =>0+hv
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Method

Number of nights | MSTIDs | No MSTIDs

GW:s A C

No GWs B D

T = A+B+C+D = total number of nights
M = A+B = MSTID occurrences

W = A+C = GW occurrences

A = both MSTID and GW

B = only MSTID, no GW

C =only GW, no MSTID

D = neither MSTID nor GW

Occurrence Rates MSTIDs GWs

Dependent Rmqg=A/W | Rwy=A/M

Independent Rm;=M/T | Rwj=W/T

CMW = Rmd/Rmi = RWd/RWi = AT/ MW

Cmw > 1 => positive correlation
Cmw < 1 => negative correlation
Cmw ~ 1 => no correlation



Number
of Nights

No

MSTIDs | \1sTiDs

Results

Occurrence
Rates

MSTIDs GWs

GWs

283 403

686 Dependent

Rmg=41% | Rwy = 78%

No GWs

80 480

Independent

Rm; = 29% | Rw; = 55%

363

Total=1246

CMW =1.42 =

Rmd/Rmi = RWd/RWi
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Discussion
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X =>» auroral GWs, tides, and oscillations in solar wind/magnetosphere

Y => intensity, wavelength, orientation of GWSs, neutral winds, E-field.



Discussion

Physical Mechanism

= GWs with Az > 200 km can propagate up to the F-region.

e The neutral GWSs are generated in the troposphere by local sources.

e These neutral GWSs then propagate vertically up to the local
mesosphere.

e GWs then transfer their energy to the E-region plasma via ion-neutral
collisions causing perturbations in the plasma which appear as GWSs in
the airglow images.

e This modulated E-region plasma electrodynamically couples to the F-
region plasma causing seed perturbations in the F-region.

e These perturbations then obey mid-latitude F-region electrodynamics
(such as the Perkins Instability) and form plasma irregularities (such as
MSTIDs).



