The relation between magnetospheric state parameters and the occurrence of plasma depletion events in the night-time mid-latitude F-region

Ilgın Şeker¹, Shing F. Fung¹, John D. Mathews²

¹Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center

²Radar and Space Sciences Laboratory, Electrical Engineering, The Pennsylvania State University

Introduction Penn State All-Sky Imager

Arecibo Observatory

Airglow (630 nm) $O^{+} + O_{2} \rightarrow O_{2}^{+} + O$

35

ର Mag. Lat. [N] (dash)

25

Charge Exchange

 $O_2^+ + e^- \rightarrow O^* + O$

Dissociative Recombination

Introduction

Structure	Parallel bands	Single plume	
Appearance	Extending from north	From south	
Alignment	Northwest-southeast	North-south	
Propagation	Toward southwest	Westward	
Wavelength & period	100-300 km, ~1 hr	Not periodic	
Theory	Perkins Instability ^[1, 2]	Rayleigh-Taylor ^[3]	
Occurs when Kp is	Low	High	

Method

- ➢ F-region events from the Penn State All-sky Imager were categorized according to type (MSTID or plume), depletion intensity (weak, moderate, intense), and start/end times.
- ➤ The imager results were then analyzed according to solar wind and geomagnetic conditions between 2003 and 2008.
- Magnetospheric state parameters used in this study (Kp, Dst, AE, SW B, SW Bz, SW E, SW V, SW P) were obtained from the NASA Magnetospheric State Query System (MSQS).
- ➤ Each parameter is first averaged over the time duration of each event observed with the all-sky imager and then over all such MSTID or plume events.

Results

Туре	Plume		MSTID				
Intensity	high	total	moderate	moderate	total	high	
# of events	11	23	12	88	125	37	
Parameter							Units
Кр	4.79	3.84	2.97	1.84	1.81	1.75	
AE	654	415	203	182	171	144	nT
Dst	-86	-58	-30	-15	-13	-8	nT
SW V	542	520	506	451	452	458	km/s
SW E	3.9	1.9	0.5	-0.1	-0.2	-0.5	mV/m
SW B	15.1	10.6	5.9	5.2	5.3	5.6	nT
SW Bz	-5.9	-2.8	-0.8	0.2	0.4	0.9	nT
SW P	4.10	3.15	2.28	1.97	1.94	1.87	nPa
SWN	6.26	5.46	4.72	5.36	5.11	4.54	cm ⁻³
SW T	128	127	126	120	123	131	10^{3} K

➤ The results suggest a relation between the geomagnetic state parameters and the occurrence of plumes and MSTIDs.

Occurrence of MSTIDs and Plumes vs Kp MSTIDs Plumes **Occurrence Rate** 100% 80% 60% 40% 20% 0% 1-2 0-1 2-3 3-4 4-5 >5 Average Kp index

Conclusions

- Although individual midlatitude plumes tend to occur during geomagnetic storms, they might also occur during quiet times.
- > On the other hand, MSTIDs hardly occur during storms.
- In general, plumes and MSTIDs tend to occur at high and low Kp, Dst (magnitude), solar wind speed, pressure, magnetic and electric field (magnitude), respectively.
- ➢ In addition to the occurrence rate, the intensity of MSTIDs and plumes are also affected by the magnetospheric state.
- ➢ So, based on the magnetospheric parameters, it might be possible to tell whether an ambiguous depletion event (e.g., in the all-sky or satellite data) is likely a plume or MSTID.

Conclusions

- ➢ So, even if these F-region irregularities are seeded at lower altitudes (e.g., by GWs), their occurrences are clearly affected by the condition of the magnetosphere and solar wind.
- ➤ Recent studies suggest a connection between ionospheric waves and the solar wind oscillations ^[4, 5].
- Are various properties of MSTIDs or plumes affected by the magnetospheric state?
- ➢ Since parameters measure different parts of the magnetosphere, time delays might reveal the sequence of events from solar wind to ionosphere.

References

- [1] Perkins, F. W., Spread F and ionospheric currents, J. Geophys. Res., 78, 218-226, 1973.
- [2] Zhou, Q.-N., J. D. Mathews, C. A. Miller, and I. Seker, The evolution of nighttime mid-latitude mesoscale F-region structures: A case study utilizing numerical solution of the Perkins instability equations, *Planetary and Space Science*, 54, 710-718, 2006.
- [3] Makela, J. J., A review of imaging low-latitude ionospheric irregularity processes, J. Atmos. Solar-Terr. Phys., 68, 1441-1458, 2006.
- [4] Huang, C-S., G. J. Sofko, A. V. Kutsov, J. W. MacDougall, D. A. Andre, W. J. Hughes, V. O. Papitashvili, Quasi-periodic ionospheric disturbances with a 40-min period during prolonged northward interplanetary magnetic field, *Geophys. Res. Lett.*, 27, 12, 1795, 2000.
- [5] Livneh, D. J., I. Seker, F. T. Djuth, and J. D. Mathews, Omnipresent vertically coherent fluctuations in the ionosphere with a possible worldwide-midlatitude extent, *J. Geophys. Res.*, doi:10.1029/2008JA013999, 2009.

Acknowledgements

This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA.

The relation between gravity waves in the E-region and plasma depletion bands in the F-region observed with an all-sky imager at Arecibo Observatory

Ilgın Şeker¹, Shing F. Fung¹, John D. Mathews²

¹Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center

²Radar and Space Sciences Laboratory, Electrical Engineering, The Pennsylvania State University

Introduction

MSTIDs

Gravity Waves

Structure	Parallel bands	Waves, Ripples		
Region	F-region	Mesosphere		
Alignment	Northwest-southeast	Any direction		
Propagation	Toward southwest	Any direction		
Wavelength & period	~200 km, ~1 hr	~20 km, ~10 min		
Theory	Perkins Instability	Gravity Wave Theory		
Occurs when Kp is	Low	Any Kp		
Airglow λ	630 nm	557.7 nm		
Airglow height	200-300 km	90-105 km		
	$O^+ + O_2 \rightarrow O_2^+ + O$			
Airglow chemistry	Charge Exchange	$O + O + M \rightarrow O_2^* + M$		
	$O_2^+ + e^- \rightarrow O^* + O$	$O_2^* + O \rightarrow O_2 + O^*$		
	Dissociative	$O^* \rightarrow O + hv$		
	Recombination			

Introduction

MSTIDs

Turbulent GW

Regular GW

Ripple GW

Method

Number of nights	MSTIDs	No MSTIDs
GWs	A	С
No GWs	В	D

- T = A+B+C+D = total number of nights
- M = A + B = MSTID occurrences
- W = A + C = GW occurrences
- A = both MSTID and GW
- B = only MSTID, no GW
- C = only GW, no MSTID
- D = neither MSTID nor GW

Occurrence Rates	MSTIDs	GWs		
Dependent	$Rm_d = A/W$	$Rw_d = A/M$		
Independent	$Rm_i = M/T$	$Rw_i = W/T$		
$C_{MW} = Rm_d/Rm_i = Rw_d/Rw_i = AT/MW$				

 $\begin{array}{l} C_{MW} > 1 \Longrightarrow positive \ correlation \\ C_{MW} < 1 \Longrightarrow negative \ correlation \\ C_{MW} \sim 1 \Longrightarrow no \ correlation \end{array}$

Results

Number of Nights	MSTIDs	No MSTIDs		Occurrence Rates	MSTIDs	GWs
GWs	283	403	686	Dependent	$Rm_{d} = 41\%$	$Rw_{d} = 78\%$
No GWs	80	480		Independent	$Rm_i = 29\%$	$Rw_i = 55\%$
	363		Total=1246	$C_{MW} = 1.42 =$	Rm_d/Rm_i =	Rw_d/Rw_i

Discussion

- $X \rightarrow$ auroral GWs, tides, and oscillations in solar wind/magnetosphere
- $Y \rightarrow$ intensity, wavelength, orientation of GWs, neutral winds, E-field.

Discussion

Physical Mechanism

• GWs with $\lambda_Z > 200$ km can propagate up to the F-region.

- The neutral GWs are generated in the troposphere by local sources.
- These neutral GWs then propagate vertically up to the local mesosphere.
- GWs then transfer their energy to the E-region plasma via ion-neutral collisions causing perturbations in the plasma which appear as GWs in the airglow images.
- This modulated E-region plasma electrodynamically couples to the F-region plasma causing seed perturbations in the F-region.
- These perturbations then obey mid-latitude F-region electrodynamics (such as the Perkins Instability) and form plasma irregularities (such as MSTIDs).